SPACE CHARGE MEASUREMENTS AT THE PSB

M. Chanel,CERN/AB/ABP

THE PSB

- Injector LINAC2, >160mA, 120 s
- 4 superposed rings, $50 \pi \mathrm{~m}$ length
- 16 periods, strong focusing, $>\pi / 2 /$ period
- Horizontal multiturn injection
- Dynamical working point to absorb tune spreads and shifts: from $(4.29,4.6)$ at injection to $(4.17,4.23)$ after 200 ms up to extraction
- Coherent tune shift ~-0.18, Laslett tune shift ~-0.5 with high N even with h1\&2 to increase Bf.
- Acceptances about $(180,120) \pi$ mmmrad

$9004 / 2000$

Tune diagram, Longitudinal

理 㻎

Tomoscope view of long. phase space with h1\&2 at 8 kV . Increase Bf to over 0.55

Performance

Coherent tunes

hcor tune versus \mathbf{N} particles at 20 ms

qv calculé et qv cohérent

qv-qv diagram

Emittances(1)

- \quad Sieve reduces LINAC2 density by $5 . .6$
- Measurements taken after acceleration, in ML
- Difference between normal/sieve is only important in V plane
- Calculated zero-ampl tune is made with some assumptions , the accelerated emittances and N!!!
- Extrapolated is dq sieve*N normal/Nsieve
- Probably qh-qv=0 is responsible for the vertical blow-up...and losses

Nparticles and emittances versus number of turns with(dashed)
and without sieve

calculated tune of the zero-amplitude particle

Emittances(2)

- One turn injected as turn 1 to 13
- Note the emittance with sieve "follows" the large amplitude oscillation for large N (filamentation present)
- Without sieve, there is no filamentation which indicates that the beam is a rigid body(density effect)
- The large oscillations without sieve continue for ms and are dampeã!!!

160 MeV

GOTO Qv=4

Goto Qh=4

13 turns injected with sieve...

8 kV RF h1\& $2 \Delta \phi=0$ or π

- Need to increase the V tune to 4.56 , instead of 4.34, when cavities are in phase. Peak density is increased by ~2
- More losses on ft than for out of phase h1\&2

What's next ?

- Try to find the distributions, their evolution, correlations between H\&V distributions

