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The new SIS double rf system
Fast acceleration of U28+ ions

Four-gap magnetic alloy cavity 
V0 [kV] f [MHz] harmonic

MA 40 0 43 2 8 2

◊ Existin 32 kV h 4 s st m p id s

g p g y y
(40 kV, 0.43-2.8 MHz, 2.5 m)MA 40 0.43-2.8 2

Ferrite 16 0.86-4.2 4

◊ Existing 32 kV, h=4 system provides 
insufficient acceptance for fast 
(4 Hz, 10 T/s) acceleration of 
intense U28+ bunches.

◊ The new double rf system should
provide a larger bucket area and
flattened bunches to increase theflattened bunches to increase the
space charge limit.

◊ No possibilty to blow-up the long. emittance.p y p g

◊ Beam loading compensation and 
feedback requirements with space charge 
are presently main R&D issues

P. Hülsmann, GSI
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Broadband MA cavity impedance
and other longitudinal impedance contributionsg p

Beam loading: double harmonic RF system
Rc [Ω] Q fres

MA 1900 0.4 420 kHz

F it 3000 10 4fFerrite 3000 10 4f0

Other impedances of relevance in SIS:

Z sc

1) Space charge impedance (2 kΩ, 11.4 MeV/u)

Other impedances of relevance in SIS:
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Elliptic bunch distribution
matched bunch with space charge and beam loadingp g g
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Expected bucket and bunch areas in SIS 18
including space charge and beam-loadingincluding space charge and beam loading

single rf bucket (h=2) double rf bucket (h=2/4)g ( ) ( )

bunch

bunch 

bunch 
profile

bunch

bunch 
profile

bucket boundary

boundary

bucket boundary

bunch 
boundary

∑≈0 4: ca 30 % of the rf voltage requirement is due to space charge∑≈0.4: ca. 30 % of the rf voltage requirement is due to space charge
Beam loading: affects the bunch form in the double rf bucket.    
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Synchrotron frequency
Loss of Landau dampingp g
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Loss of Landau damping
Bunch in a single rf bucket with linear space charge g p g

Pedersen, Sacherer, 1977

Zur Anzeige wird der QuickTime™ 
Dekompressor „TIFF (Unkomprimiert)“ 

benötigt.
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Gaussian bunch distribution
with nonlinear space chargewith nonlinear space charge
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Elliptic dist.: more convenient
Gaussian dist.: more realistic for heavy ions Gaussian bunch profile

m 2H
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Gaussian dist. more realistic for heavy ions
o Role of nonlinear space charge ?
o Loss of Landau damping ?
o Stability of coherent (dipole) modes ?
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Bunch Stability
with nonlinear space chargep g
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Effective dipole impedance:

Dispersion relation (Moehl, CERN 1997):
single rf

Dispersion relation (Moehl, CERN 1997)
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Bunch stability scans
single rf bucketg

Stability scans:
o Longitudinal beam dynamics code ‘LOBO’o Longitudinal beam dynamics code LOBO
o Initial matched Gaussian bunch
o Simulation runs with different effective impedances

Pl h fi l b h f i f h ff i i do Plot the final bunch area as a function of the effective impedance.  

stable stable
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Above ∑≈1 no stable area can be observed !



Bunch stability scans
d bl fdouble rf

stable
blstable

Rather good agreement between the
stability boundary from the dispersion
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Longitudinal Bunched BTF
single rf bucketsingle rf bucket

o Simulation scans need a lot of computer resources. 
o Beam Transfer Function (BTF) measurements are faster.
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BTF Simulations
Computer Beam Transfer Function (CBTF)Computer Beam Transfer Function (CBTF)
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Longitudinal Bunched BTF Measurements
CERN PSBCERN PSB  
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BTF measurements in SIS
Low intensityLow intensity

Gaussian bunch profiles Rf phase modulation (sweep)O. Chorniy
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BTF measurements in SIS
with e-coolingwith e cooling
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Obtain the effective dipole impedance from the fit:

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

r(Ω
m
) = m

Ω
c
2 − Ω

m
2 + i2γΩ

m

Ω
c

= Ω
0

+ ΔΩ
c

Obtain the effective dipole impedance from the fit: 

ΔΩ
c

=
iω

s 0

2
Z

eff
R + iZ

eff
I( )

Oliver Boine-Frankenheim, FAIR accelerator theory group

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.



Conclusions

Motivation
o new double rf system for SIS. 
o stability of high intensity, high quality heavy ion bunches for FAIR. 

Elli ti b h di t ib tiElliptic bunch distribution
o space charge and beam loading effects in different bucket forms
o loss of Landau damping for the dipole mode, especially in double rf buckets.  p g p p y

Gaussian bunches with nonlinear space charge
o loss of Landau damping in single rf buckets (not for double rf !)                          

A i t di i l ti d t bilit f th di l dApproximate dispersion relation and stability scans for the dipole mode. 
o nonlinear space charge reduces the stability of the dipole mode in single rf buckets.

First results of BTF measurements in SIS (single rf buckets):
o weak space charge: Landau damping can be measured.
o strong space charge: bunch behaves like a driven oscillator, effective impedances.
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