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The new SIS double rf system

Fast acceleration of U28* ions

Vo [kV] | f [MHZz] harmonic

Four-gap magnetic alloy cavity
MA 40 0.43-28 |2 (40 kV,0.43-2.8 MHz, 25 m)

Ferrite | 16 0.86-42 |4

O Existing 32 kV, h=4 system provides
insufficient acceptance for fast
(4 Hz, 10 T/s) acceleration of
intense U%8* bunches.

O The new double rf system should
provide a larger bucket area and
flattened bunches to increase the
space charge limit.

0 No possibilty to blow-up the long. emittance.

P. Hilsmann, GSI

O Beam loading compensation and
feedback requirements with space charge
are presently main R&D issues.

QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.
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P. Hilsmann, private communication.

ickTime™

and a

Qu
TIFF (Uncompressed) decompressor
are needed to see this picture.
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Beam loading: double harmonic RF system

RC[fz] Q fr‘es
MA 1900 | 0.4 |420kHz

Ferrite | 3000 10 4f,

Other impedances of relevance in SIS:

1) Space charge impedance (2 k(2, 11.4 MeV/u)

Z* _i %o 1
n 26y°1+(n/n)

2) Narrow band impedances (high-Q)

=> effective impedances

Oliver Boine-Frankenheim, FAIR accelerator theory group
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Elliptic bunch distribution / “ &
\u? |

matched bunch with space charge and beam loading

Rf voltage function (double rf): velocity function:
V() =sing-sing - asin] g, +2(0-9)]-sing,, ) 2 (9.9,,)=20% ((9)- (9 ,))

Total voltage function:

Example (no beam loading): V (¢) (& ¢ L 2¢\
. =| SInY ——SIn
Vo) =V (6.1 +V. (6D +V, (8,1 P V(0= sino= 5 sined)

1 0.0020 | 11.0
space charge factor: *=——— o :
l/o l/so_1 g 0.0010¢ -;D'B
. - o & i |
Potential function: y(g,#) = _I V(p")do c : J0.6 3
’ 3 0.0000 ¢ i ~,
¢2 ° uC} 0.4 3
'Hamiltonian: H =" — &* : :
H== o M9) 5 —0.0010} :
£ : 10.2
'‘Hofmann-Pedersen’ distribution: —~0.0020 0.0

2
JH)=CJH -H H = ?’”:—a)joywmz)

QuickTime™ and a
TIFF (Uncompresse d) decompressor
are needed to see this picture.
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Expected bucket and bunch areas in SIS 18 |/ ) 1

including space charge and beam-loading k‘ / ﬁ g (it

smgle rf bucke‘r (h 2) . double r'f bucke’r (h 2/4)
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>~0.4: ca. 30 % of the rf voltage requirement is due to space charge
Beam loading: affects the bunch form in the double rf bucket.

QuickTime™ and a

TIFF (Uncompressed) decompressor F A I R
are needed to see this picture.
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Synchrotron frequency
gﬁ?

Loss of Landau damping

9%
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I . T = ~ — 2_ ~ ' . '
Synchrotron period: 7.(9) w(g) A J v (4.9,) Loss of Landau damping:
9>
Q20 () = X
Coherent dipole frequency: Q° =’ — f V:.dy ¢ mﬂx( ) i
°u
m ¢/111
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Loss of Landau damping
Bunch in a single rf bucket with linear space charge

Pedersen, Sacherer, 1977

Zur Anzeige wird der QuickTime™
Dekompressor , TIFF (Unkomprimiert)”
benotigt.

QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.
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Elliptic dist.: more convenient (
Gaussian dist.: more realistic for heavy ions

Gaussian bunch dist

|! ‘
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with nonlinear spa

. : oY
Gaussian bunch profile  j(g) = 4 expL_
& 2H

o Role of nonlinear space charge ? ~

o Loss of Landau damping ?
o Stability of coherent (dipole) modes ?
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QuickTime™ and a

TIFF (Uncompressed) decompressor
are needed to see this picture.
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Bunch Stability
wﬂ A

with nonlinear space charge

Coherent (dipole) frequency shift: =ReZ . Stability boundaries
5 N Elliptic: X=(0)
AQ = ’“)_so(z v izt T
¢ 2 e | ==,
Z ) Z(ﬂa)o + Q ) t{\: 1.0 —_— Gauss: X=0.15
n < 0.5
Effective dipole impedance: Z__ = -* 7 q
> A 0.0
’ o5l single rf
Dispersion relation (Moehl, CERN 1997): 1o . .
L A 25 -20 -15 A‘—?lﬂxq -5 0 5
a . D0 or / Zd L2p/s < Im Ze
1 = —T [AQ — Aw‘i(cb)] QQ S[]g (“Cb)é . Cb 3.5 "
* 0 - w ?’ w . ‘ [ A iptll:lz p=|
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...... Elliptic: £'=0.2
For an elliptic bunch distribution (const. Aw,): 25 =i
A A A N 2.0
’ Zal =~
= -1(AQ - Aw )I F(9)0do ey
0 2 — w_+ 1y 1ol
0.5}
K.Y. Ng, FNAL report (2005) Gauss: double rf more N
. -15 -10 -5 0
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ckTime™ and a

Qui ’
TIFF (Uncompressed) decompressor
are needed to see this picture.
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Bunch stability scans
single rf bucket

Stability scans:

o Longitudinal beam dynamics code 'LOBO’

o Initial matched Gaussian bunch

o Simulation runs with different effective impedances

o Plot the final bunch area as a function of the effective impedance.
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e Above Y %1 no stable area can be observed !
TIFF (Uncompressed) decompressor F A I R
are needed to see this picture.
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Bunch stability scans
double rf
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Rather good agreement between the
stability boundary from the dispersion
relation and the simulations scans.

QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.
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Longitudinal Bunched BTF Al g
single rf bucket y B -

o Simulation scans need a lot of computer resources.
o Beam Transfer Function (BTF) measurements are faster.

rf phase modulation:  V_(¢) =V sin(¢+ £sin(Q 1))

_ bunch offset amplitude

TF: Q)=
BTF " rf phase modulation

CYRRSYES

Stability boundary: (€, )= AQ

o With space charge the (BTF)! does not necessarily relate to the stability boundary.
o The BTF is only defined with Landau damping or external damping.

Weak space charge 2 <X Strong space charge 2> 2
- N2 A . . . . .
$:0:  r(Q)=-n| LD b+ 219 + 07g = 222 sin(Q 1)
! on_w5(¢)+/7

(‘External’ damping rate v)
Elliptic dist.:  r(Q )=rl(Q )- Ao,

QZ
Q)= =
Q m _
Gauss: AQ )= &) Q-0 +2)0
— 1-D(Q)
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Combuter Tran: fer' Function (CBTF)
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Longitudinal Bunched BTF Measuremen’rsq “ .

CERN PSB w
‘undamped oscillator’ @ longitudinal bunched BTF
rQ )= . measurements with space charge
1 Q- were performed 1977 by

= F.Pederson and F.Sacherer.

m

- Amplitude and phase
E’ response around the
< Q, n=3 dipole sideband.

X< X
QuickTime™ and a th
A TIFF (Uncompressed) decompressor
are needed to see this picture.

o)

()]

©

T

|_

<)

2

<

QuickTime™ and a
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BTF measurements in SIS

Low intensity

‘Q g

O. Chorniy Gaussian bunch profiles Rf phase modula’rlon (sweep)
Ion: U73* |
Energy: 11.4 MeV/u o -
N=1-6-108 g S g : |

Space charge: <3,
rf. mod. ampl.: 0.1°

Time , mks

ring circumference

QuickTime™ and a

TIFE (U"C%mé’ rtessed)tr(]:i_ecqn;pressor TIFF (Uncgmulrfrgls,n;?j;Mdgggn?pressor
are needed to see this picture.
P O(Q ) are needed to see this picture.
m

QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.

Oliver Boine-Frankenheim, FAIR accelerator theory group



BTF measurements in SIS 11\

with e-cooling ¥
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QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.
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Conclusions y,:‘? » *

Motivation

o new double rf system for SIS.

o stability of high intensity, high quality heavy ion bunches for FAIR.
Elliptic bunch distribution

o space charge and beam loading effects in different bucket forms

o loss of Landau damping for the dipole mode, especially in double rf buckets.
Gaussian bunches with nonlinear space charge

o loss of Landau damping in single rf buckets (not for double rf 1)
Approximate dispersion relation and stability scans for the dipole mode.

o nonlinear space charge reduces the stability of the dipole mode in single rf buckets.
First results of BTF measurements in SIS (single rf buckets):

o weak space charge: Landau damping can be measured.

o strong space charge: bunch behaves like a driven oscillator, effective impedances.

QuickTime™ and a
TIFF (Uncompresse d) decompressor
are needed to see this picture.
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