

L. Bottura

CARE-HHH-APD BEAM'07 October 5th, 2007

The path for the LHC upgrade

Outline

- Requirements for the SPS+ (and PS2) magnets
- SPS+ magnet design study
 - Outstanding issues
 - Scaling of relevant quantities such as magnet volume, material weight (cost), voltage, stored energy and AC loss
- A look over the fence (other EU R&D)
- A look beyond the hill (15 years from now)
- What we should do (R&D plan)

Outline

- Requirements for the SPS+ (and PS2) magnets
- SPS+ magnet design study
 - Outstanding issues
 - Scaling of relevant quantities such as magnet volume, material weight (cost), voltage, stored energy and AC loss
- A look over the fence (other EU R&D)
- A look beyond the hill (15 years from now)
- What we should do (R&D plan)

Magnet design parameters as from ECOMAG-05 and LUMI-06

	PS2+a	PS2+b	SPS+a	SPS+b
Injection energy [GeV]	4	4	50	75
Extraction energy [GeV]	50	75	1000	1000
Injection field [T]	0.144	0.144	0.225	0.337
Maximum field [T]	1.8	2.7	4.5	4.5
Maximum ramp-rate [T/s]	1.6	2.5	1.43	1.39
Ramp time [s]	1.1	1.1	3	3
Dipole magnetic length [m]	3	3	6	6
Number of dipoles [-]	200	200	750	750
Number of cycles [Mcycles]	60	60	1	1

PS2 reference

The choice of energy in PS2 makes the nominal SPS+ very difficult (low injection field, field swing by a factor 20)

Outline

- Requirements for the SPS+ (and PS2)
 magnets
- SPS+ magnet design study
 - Outstanding issues
 - Scaling of relevant quantities such as magnet volume, material weight (cost), voltage, stored energy and AC loss
- A look over the fence (other EU R&D)
- A look beyond the hill (15 years from now)
- What we should do (R&D plan)

Which magnet design?

Tevatron

$$B_{peak} = 4 T$$
 $B_{injection} = 0.66 T$
 $dB/dt \approx 50 mT/s$
 $D_{coil} \approx 75 mm$

$$B_{peak} = 5.2 \text{ T}$$
 $B_{injection} = 0.23 \text{ T}$
 $dB/dt \approx 3 \text{ mT/s}$
 $D_{coil} \approx 75 \text{ mm}$

A (rather arbitrary) baseline magnet design

- In the 4...5 T range the only practical magnet option is based on coils wound with superconducting cables
- The most efficient design is a $cos(\theta)$ coil

Nominal dipole field [T]	4.5
Coil inner diameter [mm]	100
Nominal current [A]	3200
Operating temperature [K]	4.5
Length [m]	6
Mass [tons]	7.6
Stored energy [kJ]	700
Inductance [mH]	140
Ramp voltage (inductive) [V]	150
Average AC loss (coil + yoke) [W]	19+15

Sample SPS+ magnet design by courtesy of G. Kirby, CERN AC loss calculation by A. Verweij, CERN

Magnet design, manufacturing and operation issues

- AC loss in the coil (and iron)
- Radiation dose and heat deposition caused by beam loss during acceleration
- Cooling of the cable and heat removal from the magnet
- Quench detection and protection under high-voltage ramped conditions
- Field quality in ramped conditions (design, manufacturing and measurement)
- Fatigue at large number of cycles

The issue of the field swing

Measured sextupole in HERA dipoles vs.

HERA dipoles:

Injection field: 0.23 (T)

Nominal field: 5.2 (T)

• Field swing: 23 (-)

Measured field errors at injection:

■ $b_1^{PC} \approx 50$ units

• b_3^{PC} = 36 units @ 25 mm

For comparison, LHC dipoles:

Injection field: 0.54 (T)

Nominal field: 8.3 (T)

Field swing: 15 (-)

An increase of injection field will make the LHC easier, but SPS+ will become the most critical ring in the chain

General magnet design scaling

Coil volume

$$V_{coil} \approx B_{max}^{1.3} D_{coil}$$

Iron yoke volume

$$V_{\text{yoke}} \approx B_{\text{max}} D_{\text{coil}}$$

Magnet weight

$$W_{\text{magnet}} \approx B_{\text{max}}^{1.5} D_{\text{coil}}$$

Magnetic energy

$$E_{Magnetic} \approx B_{max}^2 D_{coil}$$

Ramp voltage

$$V_{\text{ramp}} \approx 1/t_{\text{ramp}} B_{\text{max}}^2 D_{\text{coil}}^2 \text{ strong dependence }!$$

cost proportional to magnet size, grows more than linearly with bore field

Coil voltages and protection

- Integrated ramp voltages for SPS+ are in the range of 120 kV (750 dipoles, 6 m length)
 - Requires partitioning of the circuit in sectors to use standard technologies (below 20 kV)
 - Quench detection is an issue (0.1 V signal in 200 V) and requires compensation of inductive voltage at the level of 0.1 %
 - Quench protection has to be demonstrated in fast-ramped, high current density accelerator magnets

Lessons and recipes - 1

- Even in the 4...5 T range, choose sparingly bore field and magnet aperture. Each extra Gauss and mm is costly (magnet volume and weight) and makes operation and protection more difficult (ramp voltage, stored energy)
- Iterate early with beam specifications for bore field and magnet aperture

AC loss scaling with magnet design parameters

- Loss in the superconducting coil
 - Hysteresis in the superconducting filaments:

$$P_{M} \approx D_{fil} J_{c}$$
 $V_{coil} log (B_{max})$ $1/t_{ramp}$ operation strand magnet design

 Coupling (eddy) currents in superconducting strands and cables:

$$P_C \approx w f(N,R_a,R_c) V_{coil} B_{max}^2 / t_{ramp}$$
 operation cable magnet design

Loss in (optimised) iron

 V_{coil} and V_{yoke} depend on B_{max} and D_{coil}

AC loss values for the baseline SPS+ dipole design

- Average AC loss (dynamic load) during a 12 s cycle: 5.7
 W/m @ 4.2 K
 - This represents a large cryogenic load: 34 kW @ 4.2 K
 - Large installation, the size of 2 LHC refrigerators, and would require 8.5 MW of electric and cooling power
 - Only marginally acceptable percentage (15 %) of the power presently needed to run the SPS (the total value quoted is 60 MW)
- A further reduction of AC loss is required: R&D on strand, cable and iron yoke

AC loss is strongly dependent on magnet bore field and aperture as well as the details of the cross section

Lessons and recipes - 2

Heat

Minimize AC loss, compatibly with protection, stability (transient heat balance) and current distribution Current

The **tri-lemma** of the optimum pulsed superconducting cable design

(courtesy of P. Bruzzone)

Balance ... and cost!

Distribution

Ou:

Outline

- Requirements for the SPS+ (and PS2)
 magnets
- SPS+ magnet design study
 - Outstanding issues
 - Scaling of relevant quantities such as magnet volume, material weight (cost), voltage, stored energy and AC loss
- A look over the fence (other EU R&D)
- A look beyond the hill (15 years from now)
- What we should do (R&D plan)

On-going European R&D on fastramped superconducting magnets

- FAIR at GSI (Darmstadt, D)
 - SIS-100 (2 T, 4 T/s, Superferric, Nuclotron magnets)
 - SIS-300 (4.5 T, 1 T/s, cos-theta magnets)
 - Total R&D cost estimated at 15 MEUR (M = 24 MCHF), no data for P
- DiSCoRap at INFN (Milano, Genova, Frascati,I)
 - R&D on a 5...6 T, 1...1.5 T/s dipole for SIS-300
 - MoU covers the R&D work, the financial envelope is estimated at 4.7 MEUR (M = 7.5 MCHF), with P = 30 FTE

Seen from here, the grass in the garden of the neighbors seems much greener

Courtesy of G. Moritz, GSI

The GSI program

Courtesy of P. Fabbricatore, INFN

The INFN program

- AC loss: reduce wire and cable loss (material, conductor, winding optimization)
- Winding technology for 114 mm sagitta over 7.8 m length
- Fatigue at 10⁶ cycles (design optimization and material qualification)

Wire R&D

C-Clamp Staples

X-section optimization and magnet analysis

Winding optimization and technology demonstration

A broader perspective

Comments - 1

 The power per unit volume delivered to (and recovered from) the magnet is proportional to:

$$\Pi \approx B_{\text{max}} \times (dB/dt)_{\text{max}}$$

 An increasing value of Π is associated with increasing AC loss and voltages, two of the main issues in fast ramped magnets

Present developments aim at a target of Π ≈ 7 T²/s, independently of the magnet details. This appears to be today the upper limit of technology plus practical feasibility

Comments - 2

- Magnets of equal difficulty can be realised taking as objective Π ≈ constant
- It so happens that PS2+b
 has the same Π as SPS+
 - PS2+b:
 - B_{max} =2.7 T, $(dB/dt)_{max}$ =2.5 T/s
 - SPS+a:
 - B_{max} =4.5 T, $(dB/dt)_{max}$ =1.4 T/s

A technology demonstrator with B_{max}=2.7 T, (dB/dt)_{max}=2.5 T/s would provide the proof of principle for both a superconducting SPS and a superconducting option for PS2

Outline

- Requirements for the SPS+ (and PS2) magnets
- SPS+ magnet design study
 - Outstanding issues
 - Scaling of relevant quantities such as magnet volume, material weight (cost), voltage, stored energy and AC loss
- A look over the fence (other EU R&D)
- A look beyond the hill (15 years from now)
- What we should do (R&D plan)

Prices of electricity

Availability of electricity

15 years from now

UCTE System Adequacy Forecast 2007-2020

... Generation adequacy decreases over the period 2010-2015 in scenario A, the remaining capacity reaching the level of ARM [Adequacy Reference Margin] by 2014 (+ or - one year depending on DSM measures consideration).

Ratings for Swiss Electricity Suppliers Remain Stable

up System Adequacy

... However, high electricity prices and **continuing strong demand** for electric power should support the market [...] The operating environment will grow harsher over the next few years as the Swiss electricity market is opened up, and an expected **future supply shortfall** will require higher capital expenditure by the electricity companies. Consequently, there isn't really any scope for the credit ratings to improve.

On a time span of ~ 15 years, we will need to increase efficiency, and reduce consumption, to run **reliably** and **economically** our facilities

CS Press Release, Zurich, November 28, 2006

A (f)lower-power option for PS2

PS2 dipole *****

Iron weight [tons]	10
Peak voltage [V]	34
Average AC loss power [W]	1.3

Normal-conducting PS2 dipole

Iron weight [tons]	15
Peak voltage [V]	41
Resistive power [W]	27000

L. Bottura, R. Maccaferri, C. Maglioni, V. Parma, L. Rossi, G. de Rijk, W. Scandale, Conceptual Design of Superferric Magnets for PS2, EDMS 871183

Potential for saving 7 MW of the 15 MW estimated total power consumption of PS2 complex

Outline

- Requirements for the SPS+ (and PS2)
 magnets
- SPS+ magnet design study
 - Outstanding issues
 - Scaling of relevant quantities such as magnet volume, material weight (cost), voltage, stored energy and AC loss
- A look over the fence (other EU R&D)
- A look beyond the hill (15 years from now)
- What we should do (R&D plan)

Strand and cable R&D

- Design, develop and procure NbTi wire with
 - Jc > 2500 A/mm²
 - D_{eff} < 3 μm , corresponding to Q_h for a 3 T bi-polar cycle < 80 mJ/cm³ of NbTi
 - $\tau < 1 \text{ ms}$
- Design and produce a cable for pulsed operation
 - R_c and R_a targets are 10 mΩ and 100 μΩ respectively. Examine surface coating options vs. central core for cable production
 - Choose and test a cable insulation scheme for heat removal
 - Develop the joint technology for pulsed operation (AC loss and current distribution)

These R&D targets are consistent and complementary to the programs at GSI and INFN

NbTi wire R&D targets

ITER-like specification box: $J_c(4.2 \text{ K}, 5 \text{ T}) > 2500 \text{ A/mm}^2$ $Q_h(+/-3 \text{ T}) < 80 \text{ mJ/cm}^3 \text{ NbTi}$

 D_{eff} < 3 μm

 $D_{eff} < 2 \mu m$

In addition, specify coupling loss time constant to less than 1 ms

Beyond strand and cable

- We need a technology demonstrator to adress:
 - Design and material properties for a low-loss structure (iron yoke, coil components such as spacers, collars, keys, ...)
 - Heat transfer from cable/coil and heat removal from magnet
 - Quench detection and magnet protection scheme
 - Fatigue at large number of cycles
 - (Radiation hardness)
- In addition, there is a need for R&D in the field of instrumentation and testing:
 - Strand and cable AC loss measurement facilities
 - Field and AC loss measurements on model/prototype magnet

Activities at GSI and INFN are relevant, but cannot substitute specific R&D based on specific needs and boundary conditions at CERN

Conclusions

- There is consensus in the community of experts that all issues specific to fast-ramped superconducting magnets can be addressed and solved by
 - Adapted design solutions: phenomena are well known, engineering tools exist
 - Material R&D: within reach
- Focus should be put on a technology demonstration magnet, that proves low-loss, robust and reliable performance
 - Purchase wire
 - Produce cable
 - Wind coils
 - Test magnet models
- This technology would provide valuable input and potential savings for PS2 that cannot be discarded

Specifications for the Technology Demonstrator

- Target: produce and test a representative dipole model, Π
 ≈ 7 T²/s
 - $B_{max} \approx 2.7 \text{ T (minimum 1.8 T)}$
 - dB/dt_{max} \approx 2.5 T/s (B_{min} to B_{max} in 1 s) (minimum 1.5 T/s)
 - Q_{AC} < 5 W/m average over 2.4 s cycle
 - Good field region (≈ 10⁻⁴ homogeneity):
 - Injection (3.5 GeV): ±42 mm x ±30 mm
 - Extraction (50 GeV): ±42 mm x ±14 mm
- With this choice:
 - The R&D complements the on-going work for FAIR at GSI and INFN
 - R&D is scalable "also possibly for an SPS2+ in the future" (quoted from White Paper)

R&D success criteria

- Magnet performance: achieve stable operating conditions (nominal field, nominal ramp-rate) cycling over long times (> 12 hours);
- Low loss: achieve AC loss below 5 W/m of magnet;
- Robustness: operate stably in sequences of rapidly varying cycles, exceeding in short sequences (typically 10 cycles) the nominal performance by 20 % of the maximum field and 50 % of the nominal ramp-rate;
- Reliability: achieve a low rate of fake quench detection (< 10⁻⁶) and sustain accelerated life tests (TBD) to simulate the expected fatigue over 20 years operation.