SPS challenges

E. Shaposhnikova, CERN/AB/RF

BEAM'07, 5 October 2007

Acknowledgments: members of the SPS Upgrade Study Team and PAF working group, T. Bohl and T. Linnecar

The SPS is challenged by

- LHC upgrade scenarios (W. Scandale, F. Zimmermann):
 - $5 \times 10^{11}/\mathrm{bunch}$ spaced by 50 ns
 - 1.7 × 10¹¹/bunch spaced by 25 ns ultimate LHC intensity (*talk of G. Arduini on 3.10.07*)

• Possibilities offered by completely new SPS injector chain Linac4-SPL-PS2 (*M. Benedikt et al.*):

- <u>LHC beam</u>: 168 bunches with 4×10^{11} /bunch spaced by 25 ns injected at 50 GeV/c
- FT/CNGS beam: total intensity of 10^{14} per injection (full SPS ring)

 \Rightarrow Beam with 5.5 \times 10¹¹/bunch with 50 ns spacing will be analysed in the SPS assuming that it was produced in PS2 (*talk of R. Garoby on 2.10.2007*)

Motivation (2/2)

Maximum intensities in the SPS: achievements and future needs

		SPS record	LHC request	PS2 offer
		at 450 GeV	at 450 GeV	at 50 GeV/c
Bunch intensity	10^{11}	1.2	$1.7/5.5^{*}$	$3.6/7.2^{**}$
Total intensity	10^{13}	3.5(5.3***)	9.2	12.0
Beam current (RF)	А	1.5	3.5	4.6

* 10% beam loss assumed for PS-SPS and SPS-LHC beam transfer

** Intensity for 25/50 ns bunch spacing

*** CNGS beam at 400 GeV with 5 ns spacing and full ring

 \Rightarrow SPS upgrade is necessary

SPS Upgrade (1/2)

- Initial studies in PAF WG (chairman R. Garoby)
- From March 2007 SPS Upgrade Study Team
- G. Arduini AB/ABP,
- S. Calatroni TS/MME,
- F. Caspers AB/RF,
- P. Chiggiato TS/MME,
- K. Cornelis AB/OP,
- M. Jimenez AT/VAC,

- T. Kroyer AB/RF,
- G. Rumolo AB/ABP,
- E. Shaposhnikova AB/RF,
- M. Taborelli TS/MME,
- F. Zimmermann AB/ABP

Web site: http://paf-spsu.web.cern.ch/paf-spsu/

• Ultimate goals

- Reliably provide the LHC with the beam required for reaching ten times the nominal luminosity
- Optimum use of possibilities offered by the new injectors both for the LHC and for other users (FT, CNGS...)
- Main tasks
 - Identify limitations in the existing SPS
 - Study and propose solutions
 - Design Report in 2010 with cost and planning for proposed actions

Status of the LHC beam in the SPS

- Nominal LHC beam parameters at 450 GeV: $N_b = 1.15 \times 10^{11}$ ppb, $\varepsilon \leq 0.7$ eVs, $\varepsilon_n \leq 3.5 \ \mu$ m
- LHC beam parameters at 450 GeV measured in 2004
- 4 batches with 25 ns spaced bunches, $N_b = 1.15 imes 10^{11}$ ppb \checkmark
- longitudinal emittance of $\varepsilon = 0.6 \pm 0.1$ eVs, $\tau = 1.6 \pm 0.1$ ns \checkmark (*T. Bohl et al.*)
- transverse normalised emittances (G. Arduini et al.):
- $\varepsilon_H=2.99\pm0.26~\mu{\rm m}$ \surd

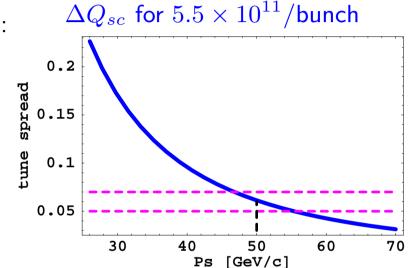
 $\varepsilon_V = 3.61 \pm 0.26 \ \mu {
m m}$

Known intensity limitations in the SPS

Single bunch intensity

- space charge
- TMCI (transverse mode coupling instability)

Multi-bunch effects (total intensity)


- e-cloud
- coupled bunch instabilities at injection and high energy
- beam loss
- beam loading in the 200 MHz and 800 MHz RF systems
- heating of machine elements (e.g. MKE kickers)

Possible actions and cures

- Higher injection energy with PS2: 50 GeV/c instead of 26 GeV/c (discussed also at hhh06 workshop)
- Impedance reduction (after identification) *talk of E. Metral*
- Active damping upgrade of beam control (transverse and longitudinal feedbacks) foreseen by White Paper
- Passive (Landau) damping due to increased nonlinearity (synchrotron frequency spread) with
 - 800 MHz (4th harmonic) RF system
 - increased longitudinal emittance

Single bunch limitations: space charge

- Limit for space-charge tune spread: $\Delta Q_{sc} < 0.07$ (ppbar)
- ΔQ_{sc} at 26 GeV/c for the LHC beam in the SPS:
 - nominal intensity: 0.05
 - ultimate intensity: 0.07
 - upgrade scenario: 0.23

 \Rightarrow Sufficient improvement for bunch intensity of 5.5×10^{11} due to higher injection energy: $\Delta Q_{sc} = 0.06$

Single bunch limitations: TMCI

TMCI: Transverse Mode Coupling Instability

 With impedance model obtained Normalised TMCI threshold N_{th} as a best fit to measurements for 2.75 the LHC bunch at 26 GeV/c (2006) 2.5 $N_{th} \sim 1.4 \times 10^{11}$ (G. Rumolo et al) 2.25 2 • Threshold intensity scales as 1.75 (matched voltage) 1.5 1.25 $N_{th} \propto |\eta| arepsilon_L$ 1 30 50 60 40 70 Ps [GeV/c]

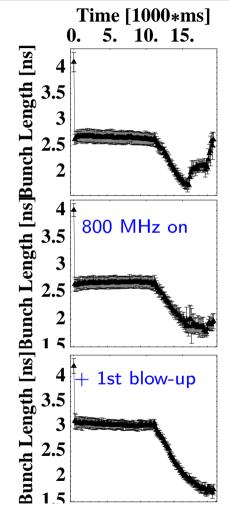
⇒ At 50 GeV/c the TMCI threshold is increased by factor 2.5 ($\propto \eta$) ⇒ Increase of emittance to 0.6 eVs needed for 5.5×10^{11} /bunch

- Main intensity limitation in the SPS for nominal LHC beam.
- Leads to transverse emittance blow-up and instabilities:
- coupled bunch in H-plane (a few MHz)
- single bunch in V-plane in the batch tail (~ 700 MHz)
- Present cures:
- scrubbing run,
- high chromaticity in V-plane,
- transverse damper in H-plane

H-plane

• Coupled-bunch instability in H-plane at different energies. Measurements with 1.1×10^{11} ppb (G. Arduini et al.)

Momentum [GeV/c]	Growth time [turns]
26	300-400
55	800-900
450	6000


 \Rightarrow Instability growth rate $\sim 1/\gamma$

V-plane

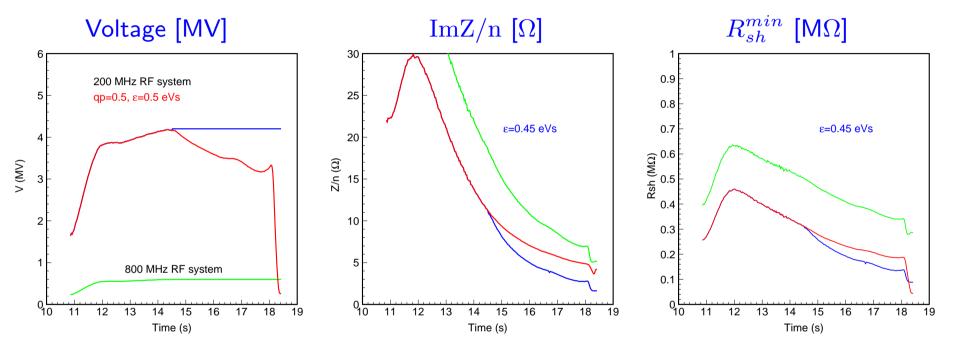
- Simulations predict threshold reduction with energy (G. Rumolo et al) but increase for "50 ns" spacing (≥ 2 ?, F. Zimmermann)
- Intensive MD studies of e-cloud instability at different energies in 2007 - results in *talk of G. Rumolo*
- \Rightarrow Studies of the possible SPS chamber upgrade using
- (1) TiN coating: talk of S. Calatroni, P. Chiggiato and M. Taborelli
- (2) Cleaning electrodes: talk of F Caspers and T. Kroyer
- (3) Grooves: in collaboration with SLAC M. Munro, M. Pivi, M. Venturini

We plan to install 4 different samples in the SPS e-cloud measurement set-up (M. Jimenez et al) during 2007/2008 shutdown for beam tests in 2008

Longitudinal coupled-bunch instability (1/2)

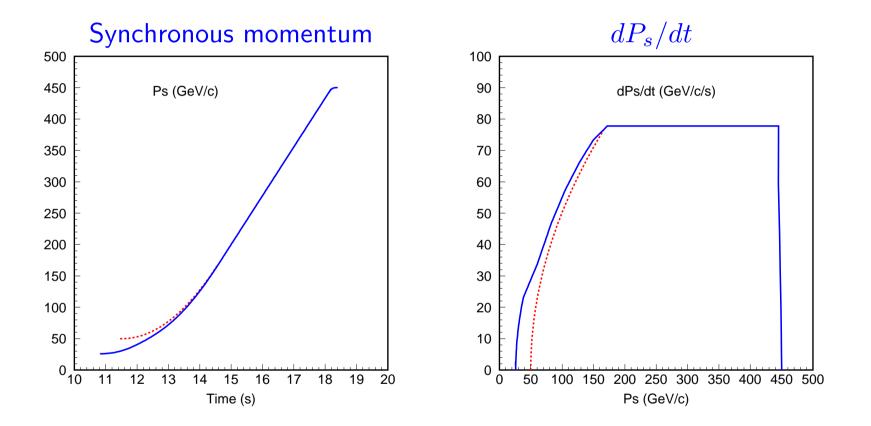
- Threshold: single batch with 2×10^{10} per bunch is unstable at $\sim 280 \text{ GeV}$
- Source: fundamental and HOMs of 200 MHz RF system (629, 912 MHz...)

• Cures:

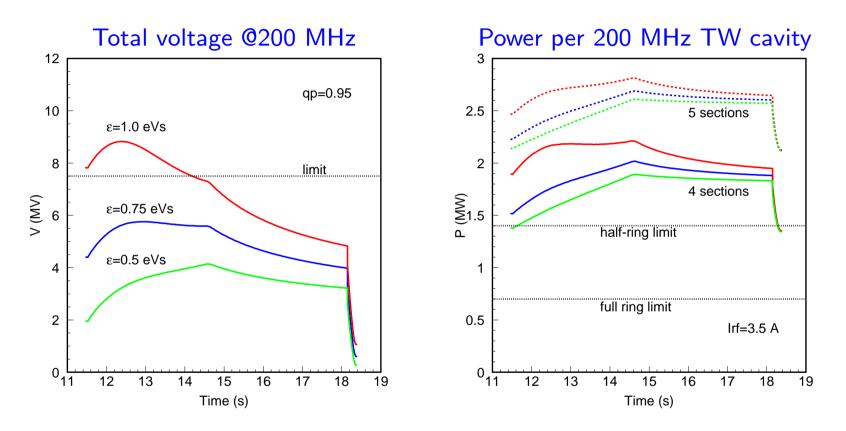

- 1. the 800 MHz RF system in bunchshortening mode through the cycle
- 2. plus controlled emittance blow-up by
 - (a) mismatched voltage at injection:

 $\varepsilon_{2\sigma} = 0.35 \text{ eVs} \rightarrow 0.42 \text{ eVs}$

(b) beam excitation at 200 GeV with band-limited noise: $\rightarrow 0.6 \text{ eVs}$

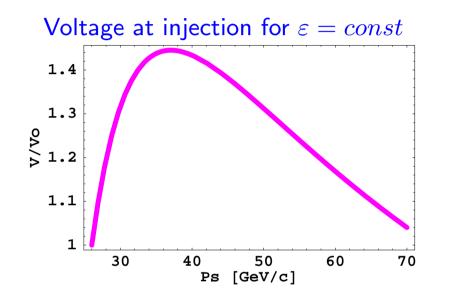

Longitudinal coupled-bunch instability (2/2)

Threshold impedances for injection at 26 GeV/c and nominal LHC intensity



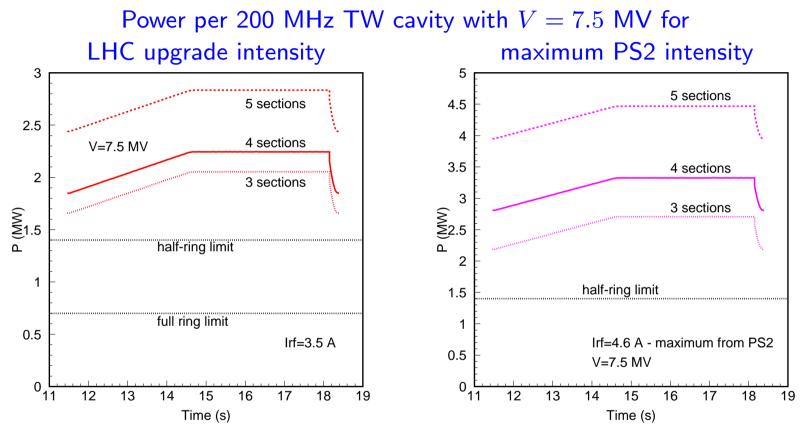
- Instability observed at $\sim 1.1 \times 10^{11}$ /bunch (with 800 MHz off) at injection
- $N_{th} \propto \varepsilon^2 \Rightarrow \varepsilon \sim 0.6$ eVs at injection and controlled emittance blow-up to 0.9 eVs above 280 GeV for the LHC upgrade scenario with "50 ns beam"
- No significant change in thresholds due to injection at 50 GeV

SPS acceleration cycle with PS2


RF requirements (1/3)

• To avoid beam loss in operation: $A \simeq 1.4 \varepsilon \rightarrow$ for $\varepsilon_{inj} = 0.6$ eVs at the beginning of ramp we need A = 0.85 eVs (or 0.75 eVs with 0.9 filling factor)

• The required voltage can be reduced by slow ramp


RF requirements (2/3)

- For injection at 50 GeV/c with $V_{max} = 7.5$ MV: $\varepsilon_{inj} \leq 0.8$ eVs $(V \propto \varepsilon^2)$
- For the same ε_{inj} higher voltage would be needed for injection in the range (30-50) GeV/c

 \Rightarrow The PS2 energy $\geq 50~{\rm GeV}$

RF requirements (3/3)

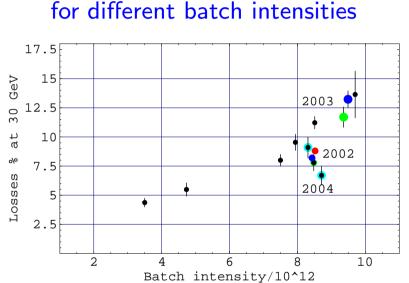
 \Rightarrow Cavity length could be optimised (5 \rightarrow 3 sections)

- \Rightarrow The 200 MHz and 800 MHz power plant should be doubled
- \Rightarrow R&D for re-design of couplers and coaxial lines

Future FT/CNGS beam in the SPS

	SPS=11 PS	${\sf SPS}\simeq 5\;{\sf PS2}$			
	3.0 s	3.0 s	4.2 s		
$\geq 250~{ m GeV/c}$	7.5	7.5	6.0		
maximum	7.6	10.5	7.0		

RF voltage [MV] for different acceleration time


RF power per cavity [MW] for different acceleration time

Ν	SPS= 11 PS	${\sf SPS}\simeq 5\;{\sf PS2}$	
$[10^{13}]$	3.0 s	3.0 s	4.2 s
4.8	0.65	0.75	0.5
7.0	0.85	1.0	0.7
10.0		1.4	1.1

• Double RF power and 40% more voltage for short ($t_{acc} = 3.0$ s) cycle

• For the same number of pot/year - 25% more intensity in the SPS for long cycle (*M. Meddahi, E. S., CERN-AB-2007-013 PAF*)

Beam loss

Relative capture loss for different batch intensities

- Strong dependence on intensity
- Relative beam losses increase with intensity (instabilities, beam size ...)
- To keep the same absolute loss (radiological impact) relative loss should be reduced for higher intensity
- Main limitation for intensity increase during "record" CNGS run in 2004

 \Rightarrow Improved machine performance and radioprotection. Beam collimation?

Summary (1/2)

The LHC upgrade scenario with 50 ns bunch spacing is very challenging for the SPS. Nevertheless

- The increased injection energy with PS2 (≥ 50 GeV) should help to overcome single bunch limitations (space charge and TMCI)
- Increased longitudinal emittance at injection ($\geq 0.6 \text{ eVs}$) should cure multi-bunch effects and TMCI (completely)
- To accelerate "50 ns" beam with large longitudinal emittance the RF system of the SPS should be seriously upgraded: doubling of power plant with R&D for its most critical elements.
- Vertical e-cloud instability is a "bottle-neck" → the SPS vacuum chamber upgrade should be studied
- SPS impedance control is essential for any future intensity increase

What was not discussed but not forgotten:

- Injection kicker at 50 GeV/c
- Beam control:
 - longitudinal feedback, feedforward and damper
 - transverse feedback/damper
- Beam dump
- Beam instrumentation
- The 200 MHz capture RF system in the LHC

⇒ The SPS must be significantly improved to match all other upgrades in the accelerator chain! - Any good ideas?