

Scenarios for the LHC Upgrade

Walter Scandale & Frank Zimmermann

BEAM'2007 CERN

We acknowledge the support of the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" programme (CARE, contract number RII3-CT-2003-506395)

outline

two scenarios for the beam/IR parameters

- merits and challenges
- impact of β^*
- luminosity evolution
- luminosity leveling (incl. β^* dependence)
- bunch structures

Injector upgrade

Context, goals and perspectives

LHC challenges

- collimation & machine protection
 - damage, quenches, cleaning efficiency, impedance
- electron cloud
 - heat load, instabilities, emittance growth
- beam-beam interaction
 - head-on, long-range, weak-strong, strong-strong
- multiplicity of the events per crossing

LHC baseline luminosity was pushed in competition with SSC ⇒ energy versus luminosity race

parameter	symbol	nominal	ultimate	
transverse emittance	ε [μm]	3.75	3.75	
protons per bunch	N _b [10 ¹¹]	1.15	1.7	
bunch spacing	∆t [ns]	25	25	
beam current	I [A]	0.58	0.86	
longitudinal profile		Gauss	Gauss	
rms bunch length	σ _z [cm]	7.55	7.55	
beta* at IP1&5	β* [m]	0.55	0.5	
full crossing angle	θ _c [μrad]	285	315	
Piwinski parameter	$\phi = \theta_c \sigma_z / (2^* \sigma_x^*)$	0.64	0.75	
peak luminosity	L [10 ³⁴ cm ⁻² s ⁻¹]	1	2.3	
peak events per crossing		19	44	
initial lumi lifetime	τ _L [h]	22	14	
effective luminosity (T _{turnaround} =10 h)	L _{eff} [10 ³⁴ cm ⁻² s ⁻¹]	0.46	0.91	
	T _{run,opt} [h]	21.2	17.0	
effective luminosity (T _{turnaround} =5 h)	L _{eff} [10 ³⁴ cm ⁻² s ⁻¹]	0.56	1.15	
	T _{run,opt} [h]	15.0	12.0	
e-c heat SEY=1.4(1.3)	P [W/m]	1.07 (0.44)	1.04 (0.59)	
SR heat load 4.6-20 K	P _{SR} [W/m]	0.17	0.25	
image current heat	P _{IC} [W/m]	0.15	0.33	
gas-s. 100 h (10 h) τ _b	P _{gas} [W/m]	0.04 (0.38)	0.06 (0.56)	
extent luminous region	σ _ι [cm]	4.5	4.3	

LHC Upgrade

- 10x higher luminosity $\sim 10^{35}$ cm⁻² s⁻¹ (SLHC)
 - Requires changes of the machine and particularly of the detectors
 - ⇒ Upgrade to SLHC mode around 2014-2016
 - \Rightarrow Collect ~3000 fb⁻¹/experiment in 3-4 years data taking
 - ⇒ difficult trade-off in between:
 - ◆ collimation & machine protection
 - electron cloud
 - ♦ beam-beam interaction
 - multiplicity of the events per crossing
 - much later: higher energy? (DLHC)
 - -LHC can reach $\sqrt{s} = 15$ TeV with present magnets (9T field)
 - $-\sqrt{s}$ of 28 (25) TeV needs ~17 (15) T magnets \Rightarrow R&D needed!

parameter	symbol	25 ns, small β*	50 ns, long	
transverse emittance	ε [μm]	3.75	3.75	
protons per bunch	$N_b [10^{11}]$	1.7	4.9	
bunch spacing	Δt [ns]	25	50	
beam current	I [A]	0.86	1.22	
longitudinal profile		Gauss	g Flat	
rms bunch length	σ_{z} [cm]	7.55	11.8	
beta* at IP1&5	β* [m]	80.0	0.25	
full crossing angle	$\theta_{\rm c}$ [µrad]	0	381	
Piwinski parameter	$\phi = \theta_c \sigma_z / (2*\sigma_x^*)$	9	2.0	
hourglass reduction		0.86	0.99	
peak luminosity	$L [10^{34} \text{cm}^{-2} \text{s}^{-1}]$	15.5	9 10.7	
peak events per crossing		294	403	
initial lumi lifetime	$\tau_{L}[h]$	2.2	4.5	
effective luminosity (T _{turnaround} =10 h)	$L_{e\!f\!f}[10^{34}{ m cm}^{-2}{ m s}^{-1}]$	2.4	2.5	
	T _{run,opt} [h]	6.6	9.5	
effective luminosity (T _{turnaround} =5 h)	$L_{e\!f\!f}$ [10 ³⁴ cm ⁻² s ⁻¹]	3.6	3.5	
	T _{run,opt} [h]	4.6	6.7	
e-c heat SEY=1.4(1.3)	P [W/m]	1.04 (0.59)	0.36 (0.1)	
SR heat load 4.6-20 K	P _{SR} [W/m]	0.25	0.36	
image current heat	P _{IC} [W/m]	0.33	0.78	
gas-s. 100 h (10 h) τ_b	P _{gas} [W/m]	0.06 (0.56)	0.09 (0.9)	
extent luminous region	σ _l [cm]	3.7	5.3	
comment		D0 + crab (+ Q0)	wire comp.	

New upgrade scenarios

challenges

injector upgrade

Crossing with large Piwinski angle

aggressive triple

compromises
between
of pile up
events
and
heat load

LHC upgrade path 1: early separation (ES)

- ultimate LHC beam (1.7x10¹¹ protons/bunch, 25 spacing) J.-P. Koutchouk (2005)
- squeeze β * to ~10 cm in ATLAS & CMS
- add early-separation dipoles in detectors starting at ~ 3 m from IP
- possibly also add quadrupole-doublet inside detector at ~13 m from IP
- and add crab cavities $(\phi_{\text{Piwinski}} \sim 0)$
 - → new hardware inside ATLAS & CMS detectors, first hadron crab cavities

ES scenario assessment

merits:

most long-range collisions negligible, no geometric luminosity loss, no increase in beam current beyond ultimate, could be adapted to crab waist collisions (LNF/FP7)

challenges:

- ◆ DO dipole deep inside detector (~3 m from IP),
- optional Q0 doublet inside detector (~13 m from IP),
- strong large-aperture quadrupoles (Nb₃Sn)
- crab cavity for hadron beams (emittance growth), or shorter bunches (requires much more RF)
- lack 4 parasitic collisions at 4-5 σ separation,
- off-momentum β beating 50% at δ =3x10⁻⁴ compromising collimation efficiency,
- low beam and luminosity lifetime $\sim \beta^*$

LHC upgrade path 2: large Piwinski angle (LPA)

- double bunch spacing to 50 ns, longer & more intense bunches with $\phi_{\text{Piwinski}} \sim 2$
- $\beta*\sim25$ cm, do not add any elements inside detectors
- long-range beam-beam wire compensation
 - → novel operating regime for hadron colliders

F. Ruggiero, W. Scandale. F. Zimmermann (2006)

larger-aperture triplet magnets

fewer, long & intense bunches + nonzero crossing angle + wire compensation

LPA scenario assessment

merits:

no elements in detector, no crab cavities,
lower chromaticity,
less demand on IR quadrupoles
(NbTi expected to be possible),
could be adapted to crab waist collisions (LNF/FP7)
challenges:

- operation with large Piwinski parameter unproven for
- hadron beams (except for CERN ISR),
- high bunch charge,
- beam production and acceleration through SPS,
- larger beam current,
- wire compensation (almost established),
- off-momentum β beating ~30% at δ =3×10⁻⁴

motivation for flat bunches & LPA

luminosity for Gaussian bunches

$$L^{Gauss} \approx \frac{1}{2} \frac{f_{coll} \gamma}{r_p \beta^*} \Delta Q_{tot} N_b$$

luminosity for "flat" bunches

$$L^{flat} \approx \frac{1}{\sqrt{2}} \frac{fcoll \gamma}{r_p \beta^*} \Delta Q_{tot} N_b$$

- F. Ruggiero,
- G. Rumolo,
- F. Zimmermann,
- Y. Papaphilippou, RPIA2002

- ♦ for the same total number of particles and the same total tune shift from two IPs the luminosity will be ~1.4x higher with a "flat" bunch distribution;
- the number of particles N_b can be increased independently of ΔQ_{tot} only in the regime of large Piwinski angle

geometric luminosity reduction vs β*

geometric reduction factor

average luminosity vs β*

average luminosity [10³⁴cm⁻²s⁻¹]

including crossing angle + hourglass, assuming optimum run time for 5 h turn-around

aside: "crab waist" scheme for LHC?

possible approach: go to flat beams, combine ingredients of LPA & ES schemes, add sextupoles

Z=0 for particles at $-\sigma_v$ (- $\sigma_v/2\theta$ at low current)

and at $\pi/2$ in Y

Z= σ_x/θ for particles at + σ_x ($\sigma_x/2\theta$ at low current)

Crab waist realized with 2 sextupoles in phase with the IP in X

experiments prefer more constant luminosity, less pile up at the start of run, higher luminosity at end

how could we achieve this?

luminosity leveling

ES:

dynamic β squeeze dynamic θ change (either IP angle bumps or varying crab voltage)

LPA:

dynamic β squeeze, and/or dynamic reduction in bunch length

new upgrade bunch structures

Updated needs of SLHC

Proposed maximum goal	ded at Image Beam parameters [tentative]	Bunch spacing [ns]	Protons per bunch* [10 ¹¹]	Transverse emittance in LHC [mm.mrad]	Intensity factor at PS injection*
	Nominal	25	1.15 (1.4)	3.75	0.68 (0.81)
	Ultimate	25	1.7 (2.1)	3.75	1 (1.2)
	2 × ultimate & 25 ns spacing	25	3.4 (4.1)	3.75 (blown-up to 7.5 in LHC)	2 (2.4)
	3 × ultimate & 50 ns spacing	50	4.9 (5.9)	3.75	1.44 (1.73)

* Case of 100 % (80 %) transmission PS to LHC

Updated list of future accelerators

perspective

- first two or three years of LHC operation will clarify severity of electron cloud, long-range beam-beam collisions, impedance etc.
- first physics results will indicate whether or not magnetic elements can be installed inside the detectors
- these two experiences may decide upgrade path
- crab waist option could be further explored

BEAM'07 goals

- assess potential 'show-stoppers' for the two alternative upgrade paths (LPA and ES)
- compare their respective luminosity reach
- advance designs of LHC injector upgrade & GSI FAIR project

BEAM'07 context

continuation of

- HHH-2004 at CERN, November 2004 http://care-hhh.web.cern.ch/CARE-HHH/HHH-2004
- LUMI'05 in Arcidosso, September 2005 http://care-hhh.web.cern.ch/CARE-HHH/LUMI-05
- CERN-GSI bilateral working meeting on collective effects, GSI, March 2006 http://care-hhh.web.cern.ch/CARE-HHH/Collective Effects-GSI-March-2006
- LUMI'06 Valencia, October 2006 http://care-bhh.web.cern.ch/CARE-HHH/LUMI-06

IR comparison will continue in

• IR'07 Frascati, 7-9 November 2007

Francesco Ruggiero Memorial Symposium

<u>Topics:</u> Francesco's early days at CERN; LEP, LHC & LHC-upgrade; localized and other impedances; beam-beam interaction; LHC collective effects, electron cloud; echoes; EPS-IGA, international collaborations, CARE-HHH; etc.

Speakers: S. Berg, C. Biscari, O. Bruning, M. Furman, K. Hirata, A. Mostacci, L. Palumbo, S. Petracca, Q. Qin, W. Scandale, F. Zimmermann, B. Zotter

BEAM'07 statistics

- 73 registered participants
- 17 from USA (US-LARP: BNL, FNAL, LBNL, & SLAC; ORNL)
 - 10 from Germany (GSI, FZJ)
 - 4 from Italy (INFN Genova, INFN Milano, U Roma "La Sapienza")
 - 1 from France (CEA)
 - 2 from Japan (KEK, Sokendai)
 - 1 from China (IHEP)
 - 38 from CERN

other goals

- prepare FP7 requests
- prepare information basis for CERN's long-term decisions on LHC upgrade

BEAM07 web & INDICO sites

http://care-hhh.web.cern.ch/CARE-HHH/BEAM07

http://indico.cern.ch/conferenceOtherViews.py?view=cdsagenda&confld=20082

We expect you written contributions by December 12th 2007