Status of the HL-LHC Lattice & Optics

1.) History Line: Baseline Optics

ар. ⁹	grad ¹⁰	lengths ¹¹	β^*	N1 ¹²	N2 ¹³	t ¹⁴
[mm]	[T/m]	[m]	[cm]	[ppb]	[ppb]	[h]
150	144(83%Sn)	8.2 , 7.0	13.0	1.99E11	1.21E11	6.06
150	96(83%Ti)	10.8 , 9.0	17.0	2.03E11	1.36E11	5.24
→140	150(80%Sn)	8.00, 6.8	15.0	2.01E11	1.29E11	5.64
→140	100(80%Ti)	10.5, 8.8	19.0	2.05E11	1.42E11	4.89
→120	180(83%Sn)	7.1 , 6.1	18.6	2.05E11	1.42E11	4.96
120	120(83%Ti)	9.3, 7.8	24.0	2.11E11	1.58E11	4.14
85	160(78%Ti)	7.7, 6.6	44.0	2.41E11	2.11E11	2.33
80	257(80%Sn)	4.8, 5.5	39.0	2.33E11	1.99E11	2.65

"Historic Baseline" Optics

after optimisation (RdM)

	aperture	gradient	$l_{ m Q1}$	$l_{ m Q2}$	d ₂₂	d ₁₂	β^*	$\Delta_{ m Q5}$
	m	T/m	m	m	m	m	m	m
NbTi	0.14	100	10.629	8.695	1.915	3.56	0.5	14
NbTi	0.12	118	9.465	7.97	1.64	3.05	0.43	14
Nb3Sn	0.14	150	7.685	6.577	1.915	3.56	0.4	11
Nb3Sn	0.12	170	7.204	6.184	1.64	3.05	0.37	11

Q4 Conditions: Crab Cavities

Different Triplet Parameters lead to different Optics Conditions at Q4

Q4 Conditions: Optimised Solutions

Situation for the "Standard" Pre-Squeeze Optics: 40cm

- distance between Q1 and Q2 (Q2 Q3) = 3.05 m
- distance between Q2A and Q2B = 1.64 m
- aperture 120 mm
- maximum triplet gradient 170 T/m

Q4 Conditions, Theme and Variations:

additional quadrupoles at Q5 / Q6 / Q7 ...

add. Quad at Q5 no big change (60cm optics !!)

 $\beta_{\rm x}$ crab [m]

Q4 / Q5 / Q6 in triplet configuration & add. Q7

Q4 Conditions, Consequences:

additional strong orbit corrector coils

to avoid beam offset at crab cavities (RdM)

new crossing scheme cannot take full advantage of phase advance \rightarrow *strong orbit coils needed* $l_B = 2.0m$

(P) The support of a statistical statistica statistical statist

fringe field effects of large aperture triplet quadrupoles (Matthew Thomas) to be included in MADX HL-LHC (re-) matching

Optics Transitions (Maxim Korostelev) Injection \rightarrow pre-Squeeze

several options studied, most beautiful (i.e. monotonic) one:

Optics Tolerance (Catia Milardi) 15 cm Optics

Tolerance criteria:

IR2 & IR8 Optics (Anton Bogomyagkov)

a large variety of beam optics studied & optimised

bog_150_0100_0100_3000_3000.madx $bog_{150}_{0050}_{0200}_{3000}_{3000}_{3000}_{madx} = \frac{\beta^{*}(IP8)}{\beta^{*}(IP8)} = 3m$ standard ATS, flat_xy $bog_{150}_{0050}_{0200hv}_{3000}_{3000}_{3000}_{madx} = \frac{\beta^{*}(IP8)}{\beta} = \frac{3m}{\beta} \text{ standard ATS, flat_yx}$ $bog_{150}_{5500}_{5500}_{100$ $bog_{150}_{0400}_{0400}_{050$ each optics has to be "implemented" into the overall LHC lattice & optics.

 $\beta^{*}(IP8) = 3m$ standard ATS, round

Main Issue: Search for ideal phase advance over IR2 / IR8

"New Working Hypothesis: 150mm Triplet"

first considerations (RdM)

"New Working Hypothesis: 150mm Triplet"

Next Steps:

Finish the New Triplet Layout for IR1 & IR5

Combine with Lattice Optimisation for Crab Cavities (Q4/5/6 & additional Q7 ??)

Include in overall Lattice / Optics with new phase advance in IR2 & IR8 ... tune adjust & rematch

Include Fringe Field Re-Match

Include new Triplet Layout in Optics Transition Match