Combining Higher-Order Resummation with Fully Exclusive NLO Calculations and Hadronization in GENEVA

Jonathan Walsh, UC Berkeley

SCET X, Duke University March 16, 2013

The GENEVA Collaboration: Simone Alioli, Christian Bauer, Calvin Berggren, Andrew Hornig, Frank Tackmann, Christopher Vermilion, JW, and Saba Zuberi

1

Combining Higher-Order Resummation with Fully Exclusive NLO Calculations and Hadronization in GENEVA

Jonathan Walsh, UC Berkeley

SCET X, Duke University March 16, 2013

The GENEVA Collaboration: Simone Alioli, Christian Bauer, Calvin Berggren, Andrew Hornig, Frank Tackmann, Christopher Vermilion, JW, and Saba Zuberi

Nicolas

Zia

/]

Monte Carlo generators are often the only appropriate tool to understand data, even when precision is required

NLO + resummation needed for an accurate description of a simple observable

Outline

The GENEVA Framework

Comparison to LEP Data Applications for the LHC

Step 3: shower each event to "fill out" the jets

the shower is restricted based on N-jettiness

Step 4: hadronize the events

Fully Exclusive Cross Sections in GENEVA

$$\begin{array}{ll} \text{thrust} & \frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_{2}\mathrm{d}\mathcal{T}} = \frac{\mathrm{d}\sigma^{\mathrm{resum}}}{\mathrm{d}\Phi_{2}\mathrm{d}\mathcal{T}} + \frac{\mathrm{d}\sigma^{\mathrm{FO}}}{\mathrm{d}\Phi_{2}\mathrm{d}\mathcal{T}} - \frac{\mathrm{d}\sigma^{\mathrm{resum}}}{\mathrm{d}\Phi_{2}\mathrm{d}\mathcal{T}} \bigg|_{\mathrm{exp}} \ \Phi_{2} \text{: hard kinematics} \end{array}$$

But we want to be fully differential in N-body PS

Fully Exclusive Cross Sections in GENEVA

alternative to additive matching

Fully Exclusive Cross Sections in GENEVA

GENEVA Master Formula

GENEVA Master Formula

can calculate the N-jet FO cross section to NLO: NLO_N

N-jet Weights from the Master Formula

$$2\text{-jet} \quad \frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_2}(\mathcal{T}_{\mathrm{cut}}) = \frac{\mathrm{d}\sigma^{\mathrm{resum}}}{\mathrm{d}\Phi_2}(\mathcal{T}_{\mathrm{cut}}) + \left[\frac{\mathrm{d}\sigma^{\mathrm{FO}}}{\mathrm{d}\Phi_2}(\mathcal{T}_{\mathrm{cut}}) - \frac{\mathrm{d}\sigma^{\mathrm{resum}}}{\mathrm{d}\Phi_2}(\mathcal{T}_{\mathrm{cut}})\right]_{\mathrm{FO}}$$

$$3\text{-jet} \quad \frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_3}(\mathcal{T}) = \frac{\mathrm{d}\sigma^{\mathrm{FO}}}{\mathrm{d}\Phi_3} \left[\frac{\mathrm{d}\sigma^{\mathrm{resum}}}{\mathrm{d}\Phi_2\mathrm{d}\mathcal{T}} \middle/ \frac{\mathrm{d}\sigma^{\mathrm{resum}}}{\mathrm{d}\Phi_2\mathrm{d}\mathcal{T}} \middle|_{\mathrm{FO}}\right]$$

$$4\text{-jet} \quad \frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_4}(\mathcal{T}) = \frac{\mathrm{d}\sigma^{\mathrm{LO}}}{\mathrm{d}\Phi_4}$$

Iterating To More Jet Multiplicities: Future Possibilities

$$\frac{\mathrm{d}\sigma^{\mathrm{incl}}}{\mathrm{d}\Phi_2} = \frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_2}(\mathcal{T}_2^{\mathrm{cut}}) + \int \frac{\mathrm{d}\Phi_3}{\mathrm{d}\Phi_2} \frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_3}(\mathcal{T}_2)\theta(\mathcal{T}_2 > \mathcal{T}_2^{\mathrm{cut}})$$
$$\frac{\mathrm{d}\sigma^{\mathrm{incl}}}{\mathrm{d}\Phi_3} = \frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_3}(\mathcal{T}_3^{\mathrm{cut}}) + \int \frac{\mathrm{d}\Phi_4}{\mathrm{d}\Phi_3} \frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_3}(\mathcal{T}_3)\theta(\mathcal{T}_3 > \mathcal{T}_3^{\mathrm{cut}})$$

matching several jet multiplicities at NLO, with simultaneous resummation of N-jettiness for multiple N

$$\frac{\mathrm{d}\sigma^{\mathrm{incl}}}{\mathrm{d}\Phi_{N_{\mathrm{max}}}} = \frac{\mathrm{d}\sigma^{\mathrm{LO}}}{\mathrm{d}\Phi_{N_{\mathrm{max}}}}$$

•

where
$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_{N+1}} = \frac{\mathrm{d}\sigma^{\mathrm{incl}}}{\mathrm{d}\Phi_{N+1}} \left[\frac{\mathrm{d}\sigma^{\mathrm{resum}}}{\mathrm{d}\Phi_{N}\mathrm{d}\mathcal{T}_{N}} \middle/ \frac{\mathrm{d}\sigma^{\mathrm{resum}}}{\mathrm{d}\Phi_{N}\mathrm{d}\mathcal{T}_{N}} \Big|_{\mathrm{FO}} \right]$$

GENEVA Reproduces Thrust Distribution

analytic calculation of thrust distribution using the usual nonsingular matching formula

GENEVA Reproduces Thrust Distribution

analytic calculation of thrust distribution using the usual nonsingular matching formula

Step 2: onto parton shower and hadronization

Matching onto the Parton Shower

So far, we have assigned a weight to events that does two important things:

- Resums logs of the 2/3 jet resolution scale to NNLL'
- Has the 2 and 3 jet events calculated to NLO accuracy

But our events still only have 2, 3, or 4 partons \rightarrow We need the parton shower to fill out our jets

We will see the important effect of showering on other observables

How do we want to limit Pythia's shower?

- We want to preserve the accuracy of our thrust distribution calculation
- We want 2/3 jet partonic events in GENEVA to shower into 2/3 jet events
- We want the 4 jet events to shower inclusively

How do we want to limit Pythia's shower?

- We want to preserve the accuracy of our thrust distribution calculation
 - $\left| \mathcal{T}_{\text{GENEVA}+\text{PY}} / \mathcal{T}_{\text{GENEVA}} 1 \right| < \lambda_N$
- We want 2/3 jet partonic events in GENEVA to shower into 2/3 jet events
 - We want to preserve the hard kinematics of the jets
- We want the 4 jet events to shower inclusively
 - Multijet tail of distributions only filled out by shower; need to match to higher order LO matrix elements

Results on Thrust Distribution

as advertised, showering does not change the thrust distribution

Step 3: next is to add hadronization

Hadronization

Hadronization

partonic GENEVA

Results on Thrust Distribution

Step 4: excellent agreement with LEP data in peak and transition regions (tail region requires higher multiplicity matrix elements)

Compare GENEVA with two e⁺e⁻ Pythia tunes ("tune 1") and ("tune 3") and two values of $\alpha_s(M_Z)$ (0.1135, 0.118)

Find that for thrust, "tune 1" with $\alpha_s = 0.1135$ works best (use as our default) Also show "tune 3" with $\alpha_s = 0.1135$ and "tune 1" with $\alpha_s = 0.118$

Other 2-jet Event Shapes

- C-parameter
 - Log structure essentially the same as thrust, with different nonsingular terms, power corrections, and nonperturbative effects
- Heavy Jet Mass
 - Log structure a different projection of dijet mass distribution
- Jet Broadening
 - SCET_{II} observable, tests the ability of GENEVA to describe other observables with different log series
- GENEVA is making a *prediction* for these observables: important to validate against their known resummation

partonic GENEVA

showered **GENEVA**

The parton shower does not significantly change the C spectrum and fills out the 2-jet region

The parton shower does not significantly change the C spectrum and fills out the 2-jet region

The parton shower does not significantly change the C spectrum and fills out the 2-jet region

Solid agreement between analytic NNLL' resummation and the GENEVA prediction

LEP Comparison: C-parameter

The default tune + α_s = 0.1135 gives as good of an agreement as thrust

Parton Shower: Heavy Jet Mass

LEP Comparison: Heavy Jet Mass

fast transition into the tail region

again the default tune performs better than larger α_s or tune 3

the need for matching out to high jet multiplicity is apparent

even matching to 5 jets at LO will improve the tail region

Parton Shower: Jet Broadening

Pythia changes the spectrum from partonic GENEVA due to the lack of correlation with thrust

GENEVA showered result closer to the NNLL than NLL resummation for jet broadening

$$SCET_{II}: \frac{d\sigma}{dB} = \frac{\alpha_s C_F}{2\pi} \left(\frac{-8\ln B - 6}{B}\right) + \dots$$
$$SCET_I: \frac{d\sigma}{d\tau} = \frac{\alpha_s C_F}{2\pi} \left(\frac{-4\ln \tau - 3}{\tau}\right) + \dots$$

interesting to ask how accurately GENEVA is describing uncorrelated observables

Interlude on Uncertainties

GENEVA provides FO and scale variation uncertainties event-by-event

We do not (yet) give uncertainties associated with Pythia

A reasonable proxy for parton shower uncertainties could be the spread between partonic and showered GENEVA

Hadronization uncertainties are more delicate, and would require proper tuning of hadronization parameters

LEP Comparison: Jet Broadening

good agreement with data through peak/early transition

multijet corrections in the tail region

Jet Broadening: GENEVA Prediction

From e⁺e⁻ to pp Collisions

Can use N-jettiness as in e⁺e⁻ to distinguish jet multiplicities

master formula:
$$\frac{\mathrm{d}\sigma^{\mathrm{incl}}}{\mathrm{d}\Phi_0} = \frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_0}(\mathcal{T}_0^{\mathrm{cut}}) + \int \frac{\mathrm{d}\Phi_1}{\mathrm{d}\Phi_0} \frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_1}(\mathcal{T}_0)\theta(\mathcal{T}_0 > \mathcal{T}_0^{\mathrm{cut}})$$

The essential perturbative physics translates to pp collisions

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_{0}}(\mathcal{T}_{0}^{\mathrm{cut}}) = \frac{\mathrm{d}\sigma^{\mathrm{resum}}}{\mathrm{d}\Phi_{0}}(\mathcal{T}_{0}^{\mathrm{cut}}) + \left[\frac{\mathrm{d}\sigma^{\mathrm{FO}}}{\mathrm{d}\Phi_{0}}(\mathcal{T}_{0}^{\mathrm{cut}}) - \frac{\mathrm{d}\sigma^{\mathrm{resum}}}{\mathrm{d}\Phi_{0}}(\mathcal{T}_{0}^{\mathrm{cut}})\right]_{\mathrm{FO}}$$
$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_{1}}(\mathcal{T}_{0}) = \frac{\mathrm{d}\sigma^{\mathrm{FO}}}{\mathrm{d}\Phi_{1}} \left[\frac{\mathrm{d}\sigma^{\mathrm{resum}}}{\mathrm{d}\Phi_{0}\mathrm{d}\mathcal{T}_{0}} \middle/ \frac{\mathrm{d}\sigma^{\mathrm{resum}}}{\mathrm{d}\Phi_{0}\mathrm{d}\mathcal{T}_{0}}\right]_{\mathrm{FO}}$$

From e⁺e⁻ to pp Collisions

Can use N-jettiness as in e⁺e⁻ to distinguish jet multiplicities

master formula:
$$\frac{\mathrm{d}\sigma^{\mathrm{incl}}}{\mathrm{d}\Phi_0} = \frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_0}(\mathcal{T}_0^{\mathrm{cut}}) + \int \frac{\mathrm{d}\Phi_1}{\mathrm{d}\Phi_0} \frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_1}(\mathcal{T}_0)\theta(\mathcal{T}_0 > \mathcal{T}_0^{\mathrm{cut}})$$

Initial state radiation provides conceptual, technical challenges

- Resummation involves beam functions, sum over partonic channels
- FO calculations more challenging
- Requires matching GENEVA to an initial state parton shower
- pp collisions require multiple parton interaction (MPI) model

Road to Improvements for pp Collisions

D Improve resummation accuracy to NNLL'

□ Improve FO accuracy to NLO₁

D Add parton shower, hadronization, MPI

Combine and test against DY studies at the LHC, Tevatron

Add other processes

Road to Improvements for pp Collisions

☑ Improve resummation accuracy to NNLL'

✓ Improve FO accuracy to NLO₁

Model Add parton shower, hadronization, MPI

Combine and test against DY studies at the LHC, Tevatron

Add other processes

We are in the process of validating the combination $NNLL' + NLO_1 + Pythia$

Conclusions

- Precision physics is going to play a large role in Higgs measurements and BSM physics at the LHC
 - Higgs property measurements improved through more accurate calculations
 - More challenging new physics searches require higher precision background estimation
- GENEVA combines the high accuracy from the calculation of single observables with the flexibility of a Monte Carlo
 - Excellent agreement with LEP data for a variety of observables
 - Look for more pp results in the next several months
 - Initial code release planned this summer

Extra Slides

Power Corrections from Hadron Masses

power corrections for thrust, 2-jettiness differ: $\Omega_1^{\mathcal{T}_2} = 2\Omega_1^{\mathcal{T}}$

Mateu, Stewart, Thaler 1209.3781

Observe an 1 scaling with thrust and 2-jettiness that agrees with MST

Fixed Order Calculation

Resummation in a Monte Carlo vs. Direct Calculation

matching formula for the spectrum:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_1}(\mathcal{T}_0) = \frac{\mathrm{d}\sigma^{\mathrm{FO}}}{\mathrm{d}\Phi_1} \left[\frac{\mathrm{d}\sigma^{\mathrm{resum}}}{\mathrm{d}\Phi_0 \mathrm{d}\mathcal{T}_0} \middle/ \frac{\mathrm{d}\sigma^{\mathrm{resum}}}{\mathrm{d}\Phi_0 \mathrm{d}\mathcal{T}_0} \middle|_{\mathrm{FO}} \right]$$

our usual formula for the resummation:

$$\frac{\mathrm{d}\sigma^{\mathrm{resum}}}{\mathrm{d}\Phi_0\mathrm{d}\mathcal{T}_0} = \sum_{\kappa} H_0^{\kappa}(\Phi_0) \int \mathrm{d}Y \, B_a^{\kappa}(Y,\mathcal{T}_0) \otimes B_b^{\kappa}(Y,\mathcal{T}_0) \otimes S(\mathcal{T}_0)$$

each part of the matching formula is a sum over contributions from separate parton channels

 $\{u\bar{u}, d\bar{d}, c\bar{c}, s\bar{s}, b\bar{b}\} \rightarrow \ell^+ \ell^-$

events are generated in individual flavor channels

Resummation in a Monte Carlo vs. Direct Calculation

matching formula for the spectrum:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_1}(\mathcal{T}_0) = \frac{\mathrm{d}\sigma^{\mathrm{FO}}}{\mathrm{d}\Phi_1} \left[\frac{\mathrm{d}\sigma^{\mathrm{resum}}}{\mathrm{d}\Phi_0 \mathrm{d}\mathcal{T}_0} \middle/ \frac{\mathrm{d}\sigma^{\mathrm{resum}}}{\mathrm{d}\Phi_0 \mathrm{d}\mathcal{T}_0} \middle|_{\mathrm{FO}} \right]$$

our usual formula for the resummation:

$$\frac{\mathrm{d}\sigma^{\mathrm{resum}}}{\mathrm{d}\Phi_0\mathrm{d}\mathcal{T}_0} = \sum_{\kappa} H_0^{\kappa}(\Phi_0) \int \mathrm{d}Y \, B_a^{\kappa}(Y,\mathcal{T}_0) \otimes B_b^{\kappa}(Y,\mathcal{T}_0) \otimes S(\mathcal{T}_0)$$

each part of the matching formula is a sum over contributions from separate parton channels

 $\{u\bar{u}, d\bar{d}, c\bar{c}, s\bar{s}, b\bar{b}\} \rightarrow \ell^+ \ell^-$

events are generated in individual flavor channels

Resummation in a Monte Carlo vs. Direct Calculation

In GENEVA we pull the sum over parton channels out:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_1}(\mathcal{T}_0) = \sum_{\kappa} \frac{\mathrm{d}\sigma_{\kappa}^{\mathrm{FO}}}{\mathrm{d}\Phi_1} \left[\frac{\mathrm{d}\sigma_{\kappa}^{\mathrm{resum}}}{\mathrm{d}\Phi_0 \mathrm{d}\mathcal{T}_0} \middle/ \frac{\mathrm{d}\sigma_{\kappa}^{\mathrm{resum}}}{\mathrm{d}\Phi_0 \mathrm{d}\mathcal{T}_0} \right]_{\mathrm{FO}}$$

The difference is small but noticeable:

Both matching formulas are equally valid, as they correctly interpolate in the singular/nonsingular limits