HADRON MASS EFFECTS IN POWER CORRECTIONS TO EVENT SHAPES

Vicent Mateu
IFIC - Valencia

Xth Workshop on Soft-Collinear Effective Theory Duke University, NC, USA

$$
03-14-2013
$$

Collaboration with J. Thaler and I. Stewart Phys.Rev. D87 (2013) 014025
Salam and Wicke JHEP 0105 (2001) 061
Lee and Sterman Phys.Rev. D75 (2007) 014022

OUTLINE

- Introduction
- Power Corrections
- Universality
- Hadron Mass Effects
- Anomalous dimension of Power Correction
- Effects on the Cross Section and First Moment
- Conclusions

INTRODUCTION

Event Shapes $e^{+} e^{-} \rightarrow$ jets

Event shapes characterize in a geometrical way the distribution of hadrons in the final state

Thrust is the most commonly studied event shape variable

They are theoretically more friendly than a Jet algorithm
Continuous transition from 2-jet to 3-jet, ... multi-jet events

Event Shapes $\quad e^{+} e^{-} \rightarrow$ jets

study power corrections and hadron mass effects in tail region, where an OPE is well defined

Motivations

- Event shapes have been extensively used to determine $\alpha_{s}\left(m_{Z}\right)$
- Power Corrections play an essential role in that determination
- Also important effects in Jet Substructure [Boost 2012 proceedings]
[Feige, Schwartz, Stewart,Thaler 2012]
- Important in hadronization and underlying event at the LHC

[Abbate, Fickinger, Hoang, VM, Stewart] arXiv:1006.3080
arXiv:I204.5746

Motivations

- Event shapes have been extensively used to determine $\alpha_{s}\left(m_{Z}\right)$
- Power Corrections play an essential role in that determination
- Also important effects in Jet Substructure
[Boost 2012 proceedings]
[Feige, Schwartz, Stewart,Thaler 2012]
- Important in hadronization and underlying event at the LHC

Most common Event shapes

- Thrust

$$
\begin{equation*}
\tau=1-\max _{\vec{n}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right|}{\sum\left|\vec{p}_{i}\right|} \tag{E.Farhi}
\end{equation*}
$$

- Angularities $\tau_{(a)}=\frac{1}{Q} \sum_{i} E_{i}\left(\sin \theta_{i}\right)^{a}\left(1-\left|\cos \theta_{i}\right|\right)^{1-a}$ [Berger, Kucs, Sterman]
- Jet Masses

$$
\rho_{ \pm}=\frac{1}{Q^{2}}\left(\sum_{i \in \pm} p_{i}\right)^{2}
$$

[Clavelli]
[Chandramohan Clavelli]

- Jet Broadening

$$
B=\frac{\sum_{i}\left|\vec{p}_{i} \times \vec{n}\right|}{\sum_{i}\left|\vec{p}_{i}\right|}
$$

[Catani, Turnock, Webber]

- C-parameter

$$
C=\frac{3}{2} \frac{\sum_{i, j}\left|\vec{p}_{i}\right|\left|\vec{p}_{j}\right| \sin ^{2}\left(\theta_{i j}\right)}{\left(\sum_{i}\left|\vec{p}_{i}\right|\right)^{2}}
$$

[Parisi]
[Donoghue, Low, Pi]
[Stewart, Tackmann, Waalewinn]

- 2-Jettiness

$$
\tau_{2}=1-\max _{\vec{n}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right|}{Q}
$$

Most common Event shapes

- Thrust

$$
\tau=1-\max _{\vec{n}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right|}{\sum\left|\vec{p}_{i}\right|}
$$

- Angularities $\quad \tau_{(a)}=\frac{1}{Q} \sum_{i} E_{i}\left(\sin \theta_{i}\right)^{a}\left(1-\left|\cos \theta_{i}\right|\right)^{1-a}$
- Jet Masses

$$
\rho_{ \pm}=\frac{1}{Q^{2}}\left(\sum_{i \in \pm} p_{i}\right)^{2}
$$

2-jet event shapes

$e \rightarrow 0$

dijet configuration

- C-parameter

$$
C=\frac{3}{2} \frac{\sum_{i, j}\left|\vec{p}_{i}\right|\left|\vec{p}_{j}\right| \sin ^{2}\left(\theta_{i j}\right)}{\left(\sum_{i}\left|\vec{p}_{i}\right|\right)^{2}}
$$

- 2-Jettiness

$$
\tau_{2}=1-\max _{\vec{n}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right|}{Q}
$$

Most common Event shapes

- Thrust

$$
\tau=1-\max _{\vec{n}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right|}{\sum\left|\vec{p}_{i}\right|}
$$

- Angularities $\quad \tau_{(a)}=\frac{1}{Q} \sum_{i} E_{i}\left(\sin \theta_{i}\right)^{a}\left(1-\left|\cos \theta_{i}\right|\right)^{1-a}$

Depend on a continuous parameter

- Jet Masses

$$
\rho_{ \pm}=\frac{1}{Q^{2}}\left(\sum_{i \in \pm} p_{i}\right)^{2}
$$

- Jet Broadening

$$
B=\frac{\sum_{i}\left|\vec{p}_{i} \times \vec{n}\right|}{\sum_{i}\left|\vec{p}_{i}\right|}
$$

- C-parameter

$$
C=\frac{3}{2} \frac{\sum_{i, j}\left|\vec{p}_{i}\right|\left|\vec{p}_{j}\right| \sin ^{2}\left(\theta_{i j}\right)}{\left(\sum_{i}\left|\vec{p}_{i}\right|\right)^{2}}
$$

- 2-Jettiness

$$
\tau_{2}=1-\max _{\vec{n}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right|}{Q}
$$

Most common Event shapes

- Thrust

$$
\tau=1-\max _{\vec{n}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right|}{\sum\left|\vec{p}_{i}\right|}
$$

- Angularities $\quad \tau_{(a)}=\frac{1}{Q} \sum_{i} E_{i}\left(\sin \theta_{i}\right)^{a}\left(1-\left|\cos \theta_{i}\right|\right)^{1-a}$
- Jet Masses

$$
\rho_{ \pm}=\frac{1}{Q^{2}}\left(\sum_{i \in \pm} p_{i}\right)^{2}
$$

Our results do not apply in this case

- Jet Broadening $\quad B=\frac{\sum_{i}\left|\vec{p}_{i} \times \vec{n}\right|}{\sum_{i}\left|\vec{p}_{i}\right|}$

Recoil sensitive

- C-parameter

$$
C=\frac{3}{2} \frac{\sum_{i, j}\left|\vec{p}_{i}\right|\left|\vec{p}_{j}\right| \sin ^{2}\left(\theta_{i j}\right)}{\left(\sum_{i}\left|\vec{p}_{i}\right|\right)^{2}}
$$

- 2-Jettiness

$$
\tau_{2}=1-\max _{\vec{n}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right|}{Q}
$$

Most common Event shapes

- Thrust

$$
\tau=1-\max _{\vec{n}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right|}{\sum\left|\vec{p}_{i}\right|}
$$

- Angularities $\quad \tau_{(a)}=\frac{1}{Q} \sum_{i} E_{i}\left(\sin \theta_{i}\right)^{a}\left(1-\left|\cos \theta_{i}\right|\right)^{1-a}$
- Jet Masses

$$
\rho_{ \pm}=\frac{1}{Q^{2}}\left(\sum_{i \in \pm} p_{i}\right)^{2}
$$

- Jet Broadening $\quad B=\frac{\sum_{i}\left|\overrightarrow{p_{i}} \times \vec{n}\right|}{\sum_{i}\left|\overrightarrow{p_{i}}\right|}$
- C-parameter $C=\frac{3}{2} \frac{\sum_{i, j}\left|\vec{p}_{i}\right|\left|\vec{p}_{j}\right| \sin ^{2}\left(\theta_{i j}\right)}{\left(\sum_{i}\left|\vec{p}_{i}\right|\right)^{2}}$
does not require minimization procedure
- 2-Jettiness

$$
\tau_{2}=1-\max _{\vec{n}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right|}{Q}
$$

Factorization theorem for event shape distributions

[Korchemsky, Sterman]

Nonsingular terms, power corrections

Calculable in perturbation theory

$$
\mathcal{O}\left(\frac{1}{e}\right)
$$

[Fleming, Mantry, Hoang, Stewart] thrust, jet masses general dijet case

Perturbative and
nonperturbative components

In the dijet limit, event shape decomposes in collinear, soft and nonperturbative modes. This translates into a factorization theorem for differential distributions.

$$
\begin{aligned}
e & =\underbrace{e_{c}+e_{s}}+e_{\Lambda} \\
& \gg \frac{\Lambda_{\mathrm{QCD}}}{Q} \mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{Q}\right)
\end{aligned}
$$

Factorization theorem for event shape distributions

$$
\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} e}=H_{Q} \times J_{e} \otimes S_{e}+\mathcal{O}\left(e^{0}, \frac{\Lambda_{\mathrm{QCD}}}{Q}\right)
$$

$$
S_{e}(\ell)=\langle 0| \bar{Y}_{\bar{n}}^{\dagger} Y_{n}^{\dagger} \delta(\ell-\underset{\uparrow}{Q}) Y_{n} \bar{Y}_{\bar{n}}|0\rangle \begin{aligned}
& \text { Leading power correction } \\
& \text { comes from soft function }
\end{aligned}
$$

Soft Wilson lines event shape operator
$\begin{array}{ll}S_{e}=\hat{S}_{e} \otimes F_{e} & \begin{array}{l}\text { [Korchemsky, Sterman] } \\ \text { perturbative non-perturbative }\end{array} \\ & \begin{array}{l}\text { [Korchemsky, Tafat] } \\ \text { [Ligeti, Tackmann, Stewart] }\end{array} \\ \text { [Hoang, Stewart] }\end{array}$
actually, it has perturbative too! (more on this later) [VM,Thaler, Stewart]

$$
\begin{aligned}
e= & \underbrace{e_{c}+e_{s}}+e_{\Lambda} \\
& \gg \frac{\Lambda_{\mathrm{QCD}}}{Q}
\end{aligned}
$$

can drop hadron
masses here by

$$
\text { power counting } \quad m_{H} \sim \mathcal{O}\left(\Lambda_{Q C D}\right)
$$

$\frac{\mathrm{d} \sigma}{\mathrm{d} e}=\frac{\mathrm{d} \hat{\sigma}}{\mathrm{d} e} \otimes F_{e}$

POWER CORRECTIONS FOR EVENT SHAPES

Tree level OPE for nonperturbative corrections

$$
S_{e}(\ell)=\langle 0| \bar{Y}_{\bar{n}}^{\dagger} Y_{n}^{\dagger} \delta(\ell-Q \hat{e}) Y_{n} \bar{Y}_{\bar{n}}|0\rangle \quad \text { [Lee \& Sterman] }
$$

For $\quad e \gg \frac{\Lambda_{\mathrm{QCD}}}{Q}$

$$
\delta(\ell-Q \hat{e}) \simeq \delta(\ell)-\delta^{\prime}(\ell) Q \hat{e}+\ldots
$$

Correct up to $\mathcal{O}\left(\alpha_{s}\right)$

Tree level OPE for nonperturbative corrections

$$
S_{e}(\ell)=\langle 0| \bar{Y}_{\bar{n}}^{\dagger} Y_{n}^{\dagger} \delta(\ell-Q \hat{e}) Y_{n} \bar{Y}_{\bar{n}}|0\rangle
$$

For $\quad e \gg \frac{\Lambda_{\mathrm{QCD}}}{Q}$

$$
\delta(\ell-Q \hat{e}) \simeq \delta(\ell)-\delta^{\prime}(\ell) Q \hat{e}+\ldots
$$

Correct up to $\mathcal{O}\left(\alpha_{s}\right)$

Shape function can be expanded in the tail

$$
\begin{aligned}
& F_{e}(\ell) \simeq \delta(\ell)-\Omega_{1} \delta^{\prime}(\ell) \\
& \Omega_{1}=\langle 0| \bar{Y}_{\bar{n}}^{\dagger} Y_{n}^{\dagger} Q \hat{e} Y_{n} \bar{Y}_{\bar{n}}|0\rangle
\end{aligned}
$$

Tree level OPE for nonperturbative corrections

$$
S_{e}(\ell)=\langle 0| \bar{Y}_{\bar{n}}^{\dagger} Y_{n}^{\dagger} \delta(\ell-Q \hat{e}) Y_{n} \bar{Y}_{\bar{n}}|0\rangle
$$

For $\quad e \gg \frac{\Lambda_{\mathrm{QCD}}}{Q}$

$$
\delta(\ell-Q \hat{e}) \simeq \delta(\ell)-\delta^{\prime}(\ell) Q \hat{e}+\ldots
$$

Correct up to $\mathcal{O}\left(\alpha_{s}\right)$

Shape function can be expanded in the tail

$$
\begin{aligned}
& F_{e}(\ell) \simeq \delta(\ell)-\Omega_{1} \delta^{\prime}(\ell) \\
& \Omega_{1}=\langle 0| \bar{Y}_{\bar{n}}^{\dagger} Y_{n}^{\dagger} Q \hat{e} Y_{n} \bar{Y}_{\bar{n}}|0\rangle
\end{aligned}
$$

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} e}=\frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} e}-\frac{\Omega_{1}}{Q} \frac{\mathrm{~d}}{\mathrm{~d} e} \frac{\mathrm{~d} \hat{\sigma}}{\mathrm{~d} e} \simeq \frac{\mathrm{~d} \hat{\sigma}}{\mathrm{de}}\left(e-\frac{\Omega_{1}}{Q}\right)+\mathcal{O}\left[\left(\frac{\Lambda_{\mathrm{QCD}}}{Q e}\right)^{2}\right]
$$

Leading nonperturbative correction in the tail is a shift of the distribution

Power correction for Thrust

Power corrections in the peak are more complicated than a shift

The main effect of the power correction is shifting the distribution to the right. The shift is proportional to $\frac{1}{Q}$

Dispersive approach
 [Dokshitzer \& Webber]

Assume that α_{s} is replaced by an effective coupling below certain cutoff μ_{I}
Subtract from perturbation theory It is believed that this procedure contributions at scales below μ_{I} removes all renormalons

Initial approach relied on one gluon exchange

The Milan factor accounts [Dokshitzer, Webber for two-gluon exchange Salam]

Dispersive approach

Assume that α_{s} is replaced by an effective coupling below certain cutoff μ_{I}

Subtract from perturbation theory contributions at scales below μ_{I}

Initial approach relied on one gluon exchange

It is believed that this procedure removes all renormalons

The Milan factor accounts [Dokshitzer, Webber for two-gluon exchange Salam]

It predicts that leading power correction is universal up to a calculable coefficient

Effect on first moment

$$
\langle e\rangle=\langle e\rangle_{\mathrm{PT}}+c_{e} \frac{\mathcal{P}}{Q} \quad c_{e}=\begin{gathered}
\text { universality } \\
\text { constant }
\end{gathered}
$$

Effect on distributions

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} e}=\frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} e}\left(e-c_{e} \frac{\mathcal{P}}{Q}\right)
$$

(more on this later)

$$
\begin{aligned}
\mathcal{P}= & \frac{4 C_{F}}{\pi^{2}} \underset{\uparrow}{\mathcal{M}} \frac{\mu_{I}}{Q}\left\{\alpha_{0}\left(\mu_{I}\right)-\alpha_{s}\left(\mu_{R}\right)-\beta_{0} \frac{\alpha_{s}^{2}}{2 \pi}\left(\ln \frac{\mu_{R}}{\mu_{I}}+\frac{K}{\beta_{0}}+1\right)\right\} \\
& \text { Milan Factor } \simeq 1.49
\end{aligned}
$$

Shape function approach

Soft function is convolution of perturbative soft function and shape function

$$
S_{e}(\ell)=\int \frac{\mathrm{d} \sigma}{\text { perturbative }} \underset{\substack{\text { nonperturbative } \\ \text { (and perturbative...) }}}{\int \mathrm{d} p \hat{S}_{e}(\ell-p) F_{e}(p)} \underset{\mathrm{d} e}{ }=\int \mathrm{d} \ell \frac{\mathrm{~d} \hat{\sigma}}{\mathrm{de}}\left(\mathrm{e}-\frac{\ell}{\mathrm{Q}}\right) \mathrm{F}_{\mathrm{e}}(\ell)
$$

Non pert. distribution is convolution of pert. distribution with shape function This is valid on the peak of the distribution as well

Shape function approach

Soft function is convolution of perturbative soft function and shape function

$$
S_{e}(\ell)=\int \mathrm{d} p \hat{S}_{e}(\ell-p) F_{e}(p) \quad \square \frac{\mathrm{d} \sigma}{\mathrm{~d} e}=\int \mathrm{d} \ell \frac{\mathrm{~d} \hat{\sigma}}{\mathrm{de}}\left(\mathrm{e}-\frac{\ell}{\mathrm{Q}}\right) \mathrm{F}_{\mathrm{e}}(\ell)
$$

Non pert. distribution is convolution of pert. distribution with shape function This is valid on the peak of the distribution as well

Effect on moments $\quad\left\langle e^{n}\right\rangle=\left\langle e^{n}\right\rangle_{\mathrm{PT}}+n\left\langle e^{n-1}\right\rangle_{\mathrm{PT}} \frac{\Omega_{1}^{e}}{Q}$
Effect on distributions $\frac{\mathrm{d} \sigma}{\mathrm{d} e}=\frac{\mathrm{d} \hat{\sigma}}{\mathrm{d} e}-\frac{\Omega_{1}^{e}}{Q} \frac{\mathrm{~d}}{\mathrm{~d} e} \frac{\mathrm{~d} \hat{\sigma}}{\mathrm{~d} e}$

Massless universality

$$
\Omega_{1}^{e}=c_{e} \Omega_{1}^{\rho}
$$

UNIVERSALITY

Studies of Universality

- Dispersive approach [Dokshitzer \& Webber 1995]
- Predicts universality for a bunch of event shapes, including recoil sensitive ones.
- They are based on a model and on the one-gluon approximation. Modification of (effective coupling) below a cutoff scale.
- Milan factor takes into account two-gluon effects. [Dokshitzer,Webber, Salam]
- SCET-CSS approach [Lee \& Sterman 2006]
- Predicts universality for non-recoil-sensitive event shapes.
- They are model-independent, formulated in terms of QCD matrix elements.
- Do not rely on one-gluon approximation.

$$
\Omega_{1}^{e}=c_{e} \Omega_{1}^{\rho}
$$

Studies of Universality

- Dispersive approach [Dokshitzer \& Webber 1995]
- Predicts universality for a bunch of event shapes, including recoil sensitive ones.
- They are based on a model and on the one-gluon approximation. Modification of (effective coupling) below a cutoff scale.
- Milan factor takes into account two-gluon effects. [Dokshitzer, Webber, Salam]
- SCET-CSS approach [Lee \& Sterman 2006]
- Predicts universality for non-recoil-sensitive event shapes.
- They are model-independent, formulated in terms of QCD matrix elements.
- Do not rely on one-gluon approximation.

Both approaches assume particles are massless!!

Massless predictions for universality

Thrust

$$
\tau=1-\max _{\vec{n}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right|}{\sum\left|\vec{p}_{i}\right|}
$$

$$
c_{\tau}=2
$$

Two-Jetiness

$$
\tau_{2}=1-\max _{\vec{n}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right|}{Q}
$$

$$
c_{\tau_{2}}=2
$$

C-parameter

$$
C=\frac{3}{2} \frac{\sum_{i, j}\left|\vec{p}_{i}\right|\left|\vec{p}_{j}\right| \sin ^{2}\left(\theta_{i j}\right)}{\left(\sum_{i}\left|\overrightarrow{p_{i}}\right|\right)^{2}}
$$

$$
c_{C}=3 \pi
$$

Angularities

Jet Masses

$$
\rho_{ \pm}=\frac{1}{Q^{2}}\left(\sum_{i \in \pm} p_{i}\right)^{2}
$$

$$
c_{\rho}=1
$$

Massless Universality in SCET-CSS

In the massless limit one has

$$
e(N)=\frac{1}{Q} \sum_{i \in N} p_{i}^{\perp} f_{e}\left(1, y_{i}\right)
$$

Massless Universality in SCET-CSS

In the massless limit one has

Transverse energy-flow operator

$$
e(N)=\frac{1}{Q} \sum_{i \in N} p_{i}^{\perp} f_{e}\left(1, y_{i}\right)
$$

$$
\mathcal{E}_{T}(y)|N\rangle=\sum_{i \in N} p_{i}^{\perp} \delta\left(y-y_{i}\right)|N\rangle
$$

[Lee Sterman, Korchemsky Oderda Sterman, Sveshnikov and F.V.Tkachov Ore Sterman]

Measures all momenta flowing in a given rapidity

$$
\mathcal{E}_{T}(y)=\frac{1}{\cosh ^{3} y} \int_{0}^{2 \pi} \mathrm{~d} \phi \lim _{R \rightarrow \infty} \int_{0}^{\infty} \mathrm{d} t \hat{n}_{i} T_{0 i}(t, R \hat{n})
$$

[unfortunately there is no physical limit in which this is the correct operator to use for power correction...]

Massless Universality in SCET-CSS

In the massless limit one has

Transverse energy-flow operator

[Bauer, Fleming, Lee, Sterman]

Measures all momenta flowing in a given rapidity

$$
\mathcal{E}_{T}(y)=\frac{1}{\cosh ^{3} y} \int_{0}^{2 \pi} \mathrm{~d} \phi \lim _{R \rightarrow \infty} \int_{0}^{\infty} \mathrm{d} t \hat{n}_{i} T_{0 i}(t, R \hat{n})
$$

[unfortunately there is no physical limit in which this is the correct operator to use for power correction...]

Massless Universality in SCET-CSS

In the massless limit one has

$$
e(N)=\frac{1}{Q} \sum_{i \in N} p_{i}^{\perp} f_{e}\left(1, y_{i}\right)
$$

Transverse energy-flow operator

$$
\mathcal{E}_{T}(y)|N\rangle=\sum_{i \in N} p_{i}^{\perp} \delta\left(y-y_{i}\right)|N\rangle
$$

Event shape operator

$$
\hat{e}=\frac{1}{Q} \int \mathrm{~d} y \mathcal{E}_{T}(y) f_{e}(1, y)
$$

$$
\begin{aligned}
& \Omega_{1}^{e}=\langle 0| \bar{Y}_{\bar{n}}^{\dagger} Y_{n}^{\dagger} Q \hat{e} Y_{n} \bar{Y}_{\bar{n}}|0\rangle \\
& \Omega_{1}^{e}=\int \mathrm{d} y f_{e}(1, y)\langle 0| \bar{Y}_{\bar{n}}^{\dagger} Y_{n}^{\dagger} \mathcal{E}_{T}(y) Y_{n} \bar{Y}_{\bar{n}}|0\rangle
\end{aligned}
$$

Massless Universality in SCET-CSS

In the massless limit one has

$$
e(N)=\frac{1}{Q} \sum_{i \in N} p_{i}^{\perp} f_{e}\left(1, y_{i}\right)
$$

Transverse energy-flow operator

$$
\mathcal{E}_{T}(y)|N\rangle=\sum_{i \in N} p_{i}^{\perp} \delta\left(y-y_{i}\right)|N\rangle
$$

Event shape operator $\quad \hat{e}=\bar{Q} \int \mathrm{~d} y \mathcal{E}_{T}(y) f_{e}(1, y)$
[Lee Sterman, Korchemsky Oderda Sterman, Sveshnikov and F.V.Tkachov Ore Sterman]

$$
\begin{aligned}
& \Omega_{1}^{e}=\langle 0| \bar{Y}_{\bar{n}}^{\dagger} Y_{n}^{\dagger} Q \hat{e} Y_{n} \bar{Y}_{\bar{n}}|0\rangle \\
& \Omega_{1}^{e}=\int \mathrm{d} y f_{e}(1, y)\langle 0| \bar{Y}_{\bar{n}}^{\dagger} Y_{n}^{\dagger} \mathcal{E}_{T}(y) Y_{n} \bar{Y}_{\bar{n}}|0\rangle=c_{e} \times \Omega^{E} \begin{array}{c}
\text { Universal pow } \\
\text { correction }
\end{array} \\
& \begin{array}{c}
\text { Boost invariance requires this } \\
\text { term is } y \text {-independent }
\end{array} \\
& \begin{array}{c}
\text { Calculable coefficient } \\
\text { depends on the event sh }
\end{array}
\end{aligned}
$$

Calculable coefficient, depends on the event shape

$$
\Omega_{1}^{E}=\langle 0| \bar{Y}_{\bar{n}}^{\dagger} Y_{n}^{\dagger} \mathcal{E}_{T}(0) Y_{n} \bar{Y}_{\bar{n}}|0\rangle
$$

Operator definition of power correction

HADRON MASS EFFECTS ON POWER CORRECTIONS

Hadron masses and Schemes

What can be measured when a particle hits the detector?
Ideally we would like energy and momentum separately measured, but that is not always possible.

If a particle is not identified, mass is not known, no information on magnitude of momentum.

One can assume all particles are pions [default scheme]
Alternatively one can use only energy and directions [E scheme]
$|\vec{p}| \rightarrow E$
Finally one can use only momenta and directions [P scheme] $E \rightarrow|\vec{p}|$

These considerations are irrelevant in perturbation theory, but have important consequences for power corrections!

Kinematics of Event Shapes

We will concentrate on event shapes that are not recoil sensitive
and can be written in the dijet limit as

$$
e(N)=\frac{1}{Q} \sum_{i \in N} m_{i}^{\perp} f_{e}\left(r_{i}, y_{i}\right)
$$

$$
\left.\begin{array}{rlr}
y & =\frac{1}{2} \log \left(\frac{E+p_{z}}{E-p_{z}}\right) & \\
\text { rapidity } \\
r \equiv \frac{p^{\perp}}{m^{\perp}} & & \text { transverse velocity }
\end{array}\right\} \begin{gathered}
\text { All event shapes can be } \\
\text { expressed } \\
\text { in terms of these } \\
\text { two variables }
\end{gathered}
$$

$m^{\perp}=\sqrt{p_{T}^{2}+m^{2}}$
transverse mass

$$
v=r=1
$$

massless limit $\quad y=\eta$
$m^{\perp}=p^{\perp}$

Mass Effects on Power Corrections

Salam \& Wicke 200I
have studied mass effects on power corrections

- Use the flux tube model (later refined with QCD effects)
- Predict that hadron masses break universality
- Find a privileged scheme (E-scheme) which preserves universality
- Predict that hadron multiplicity translates into $\log (\mathrm{Q})$ effects on power corrections

$$
\Omega_{1} \rightarrow \Omega_{1}+K\left(\log \frac{Q}{\Lambda}\right)^{\frac{4 C_{A}}{\beta_{0}}}
$$

$e(N)=\frac{1}{Q} \sum_{i \in N} m_{i}^{\perp} f_{e}\left(r_{i}, y_{i}\right) \quad$ One has to generalize the transverse energy flow operator

Mass Effects in SCET

[VM, I.W. Stewart, J.Thaler] arXiv: I209.378 I
$e(N)=\frac{1}{Q} \sum_{i \in N} m_{i}^{\perp} f_{e}\left(r_{i}, y_{i}\right) \quad$ One has to generalize the transverse energy flow operator

Transverse velocity operator

$$
\begin{aligned}
& v=v(r, y) \\
& \eta=\eta(r, y)
\end{aligned}
$$

$$
\mathcal{E}_{T}(r, y)|N\rangle=\sum_{i \in N} m_{i}^{\perp} \delta\left(r-r_{i}\right) \delta\left(y-y_{i}\right)|N\rangle
$$

measures momenta of particles with given transverse velocity flowing at a given rapidity

$$
\hat{e}=\frac{1}{Q} \int \mathrm{~d} y \mathrm{~d} r \mathcal{E}_{T}(r, y) f_{e}(r, y)
$$ two integrals

$$
\mathcal{E}_{T}(v, \eta)=-\frac{v\left(1-v^{2} \tanh ^{2} y\right)^{\frac{3}{2}}}{\cosh \eta} \lim _{R \rightarrow \infty} R^{3} \int_{0}^{2 \pi} \mathrm{~d} \phi \hat{n}_{i} T_{0 i}(R, v R \hat{n})
$$

$e(N)=\frac{1}{Q} \sum_{i \in N} m_{i}^{\perp} f_{e}\left(r_{i}, y_{i}\right) \quad$ One has to generalize the transverse energy flow operator

$$
\Omega_{1}^{e}=\int \mathrm{d} r \mathrm{~d} y f_{e}(r, y)\langle 0| \bar{Y}_{\bar{n}}^{\dagger} Y_{n}^{\dagger} \mathcal{E}_{T}(r, y) Y_{n} \bar{Y}_{\bar{n}}|0\rangle
$$

Mass Effects in SCET

[VM, I.W. Stewart, J.Thaler] arXiv: I209.378 I
$e(N)=\frac{1}{Q} \sum_{i \in N} m_{i}^{\perp} f_{e}\left(r_{i}, y_{i}\right) \quad$ One has to generalize the transverse energy flow operator $\Omega_{1}^{e}=\int \mathrm{d} r \mathrm{~d} y f_{e}(r, y)\langle 0| \bar{Y}_{\bar{n}}^{\dagger} Y_{n}^{\dagger} \mathcal{E}_{T}(r, y) Y_{n} \bar{Y}_{\bar{n}}|0\rangle=c_{e} \int \mathrm{~d} r g_{e}(r) \Omega_{1}(r)$ Boost invariance requires this term is y-independent

Operator definition of power correction $\Omega_{1}(r)=\langle 0| \bar{Y}_{\bar{n}}^{\dagger} Y_{n}^{\dagger} \mathcal{E}_{T}(r, 0) Y_{n} \bar{Y}_{\bar{n}}|0\rangle$

Same as for massless computation

$$
c_{e}=\int_{-\infty}^{\infty} \mathrm{d} y f_{e}(1, y)
$$

$$
g_{e}(r)=\frac{1}{c_{e}} \int \mathrm{~d} y f_{e}(r, y)
$$

encodes all mass effects

 each $g_{e}(r)$ defines a universality class of events with same power correction
Event shapes considered

mass scheme (default definition)

Same color means same power correction

Event shapes considered

P-scheme

Event shapes considered

E-scheme

Effective parametrization

$\Omega_{1}(r)$ can be expanded as well $\quad \Omega_{1}(r)=\Omega_{1}^{\rho} h_{0}(r)+\sqrt{3}\left(2 \Omega_{1}^{E}-\Omega_{1}^{\rho}\right) h_{1}(r)+\Omega_{1}^{\delta} h_{2}(r)+\ldots$

Effective parametrization

$g_{e}(r)$ functions are different, but it seems they could be approximated well by some suitable set of orthogonal polynomial

$$
\begin{aligned}
& h_{n}(r)=\sqrt{2 n+1} P_{n}(2 x+1) \\
& g_{e}(r)=\sum_{n=0}^{\infty} b_{n}^{e} h_{n}(r)
\end{aligned}
$$

$\Omega_{1}(r)$ can be expanded as well $\Omega_{1}(r)=\Omega_{1}^{\rho} h_{0}(r)+\sqrt{3}\left(2 \Omega_{1}^{E}-\Omega_{1}^{\rho}\right) h_{1}(r)+\Omega_{1}^{\delta} h_{2}(r)+\ldots$

$$
\begin{aligned}
\Omega_{1}^{\tau} & =1.034 \Omega_{1}^{E}-0.135 \Omega_{1}^{\rho}+0.050 \Omega_{1}^{\delta} \\
\Omega_{1}^{C} & =1.039 \Omega_{1}^{E}-0.127 \Omega_{1}^{\rho}+0.046 \Omega_{1}^{\delta} \quad \text { small correction } \\
\Omega_{1}^{\tau_{-1}^{P}} & =1.022 \Omega_{1}^{E}-0.156 \Omega_{1}^{\rho}+0.064 \Omega_{1}^{\delta}
\end{aligned}
$$

ANOMALOUS DIMENSION OF POWER CORRECTION

[VM, I.W. Stewart, J.Thaler] arXiv: I209.378।

Anomalous dimension computation

$$
\Omega_{1}(r)=\langle 0| \bar{Y}_{\bar{n}}^{\dagger} Y_{n}^{\dagger} \mathcal{E}_{T}(r, 0) Y_{n} \bar{Y}_{\bar{n}}|0\rangle
$$

One needs to compute diagrams that probe the operator

The measured probe gluon corresponds to a source

$$
A^{\mu A}(x) \rightarrow A^{\mu A}(x)+J_{\substack{\mu A}}^{\text {massless }} \text { quantum field }(x)
$$

$$
M_{1}^{\text {tree }}(r)=\frac{2 \alpha_{s} C_{F}}{\pi} \frac{m r}{\left(1-r^{2}\right)^{\frac{3}{2}}}
$$

Anomalous dimension computation

$$
\Omega_{1}(r)=\langle 0| \bar{Y}_{\bar{n}}^{\dagger} Y_{n}^{\dagger} \mathcal{E}_{T}(r, 0) Y_{n} \bar{Y}_{\bar{n}}|0\rangle
$$

One needs to compute diagrams that probe the operator

Abelian contribution exactly vanish when adding real and virtual radiation

The measured probe gluon corresponds to a source

Self-energy diagrams are IR and UV finite

Anomalous dimension computation

$$
\Omega_{1}(r)=\langle 0| \bar{Y}_{\bar{n}}^{\dagger} Y_{n}^{\dagger} \mathcal{E}_{T}(r, 0) Y_{n} \bar{Y}_{\bar{n}}|0\rangle
$$

One needs to compute diagrams that probe the operator

The measured probe gluon corresponds to a source

Only purely non-abelian diagrams contribute

We obtain an IR finite anomalous dimension

$$
\gamma^{\Omega_{1}}=-\frac{\alpha_{s} C_{A}}{\pi} \log \left(1-r^{2}\right)
$$

r-dependent anomalous dimension no mixing between various r values

RGE solution at NLL

$$
\begin{aligned}
\Omega_{1}(r, \mu) & =\Omega_{1}\left(r, \mu_{0}\right)\left(\frac{\alpha_{s}(\mu)}{\alpha_{s}\left(\mu_{0}\right)}\right)^{\frac{2 C_{A}}{\beta_{0}} \log \left(1-r^{2}\right)} \\
& \sim \Omega_{1}\left(r, \mu_{0}\right)\left[1-\frac{\alpha_{s}\left(\mu_{0}\right) C_{A}}{\pi} \log \left(\frac{\mu}{\mu_{0}}\right) \log \left(1-r^{2}\right)\right] \quad \text { Expanded out result }
\end{aligned}
$$

Results and consequences

$$
\gamma^{\Omega_{1}}=-\frac{\alpha_{s} C_{A}}{\pi} \log \left(1-r^{2}\right)
$$

r-dependent anomalous dimension no mixing between various r values

RGE solution at NLL

$$
\begin{aligned}
\Omega_{1}(r, \mu) & =\Omega_{1}\left(r, \mu_{0}\right)\left(\frac{\alpha_{s}(\mu)}{\alpha_{s}\left(\mu_{0}\right)}\right)^{\frac{2 C_{A}}{\beta_{0}} \log \left(1-r^{2}\right)} \\
& \sim \Omega_{1}\left(r, \mu_{0}\right)\left[1-\frac{\alpha_{s}\left(\mu_{0}\right) C_{A}}{\pi} \log \left(\frac{\mu}{\mu_{0}}\right) \log \left(1-r^{2}\right)\right] \quad \text { Expanded out result }
\end{aligned}
$$

Not a resummation formula for Ω_{1}^{e}

$$
\Omega_{1}^{e}(\mu)=\int \operatorname{dr} \mathrm{g}_{\mathrm{e}}(\mathrm{r}) \Omega_{1}\left(\mathrm{r}, \mu_{0}\right)\left(\frac{\alpha_{\mathrm{s}}(\mu)}{\alpha_{\mathrm{s}}\left(\mu_{0}\right)}\right)^{\frac{2 \mathrm{C}_{\mathrm{A}}}{\beta_{0}} \log \left(1-\mathrm{r}^{2}\right)} \quad \text { Unknown function! }
$$

Using expanded out result

$$
\Omega_{1}^{e}(\mu)=\Omega_{1}^{e}\left(\mu_{0}\right)-\frac{\alpha_{s}\left(\mu_{0}\right) C_{A}}{\pi} \log \left(\frac{\mu}{\mu_{0}}\right) \Omega_{\log }^{e}\left(\mu_{0}\right)
$$

$$
\Omega_{\log }^{e}\left(\mu_{0}\right)=\int \mathrm{dr} \log \left(1-\mathrm{r}^{2}\right) \mathrm{g}_{\mathrm{e}}(\mathrm{r}) \Omega_{1}\left(\mathrm{r}, \mu_{0}\right) \quad \text { New nonperturbative parameter }
$$

Matching computation

At one loop one has:

$$
\delta\left(\ell-Q e_{\mathrm{pert}}-Q e_{\mathrm{np}}\right)
$$

$\simeq \delta\left(\ell-Q e_{\mathrm{pert}}\right)-Q e_{\mathrm{np}} \delta^{\prime}\left(\ell-Q e_{\mathrm{pert}}\right)$
$\simeq \delta(\ell)-Q\left(e_{\mathrm{np}}+e_{\mathrm{pert}}\right) \delta^{\prime}(\ell)$

This corrects the tree level OPE result

Full theory computation
Effective theory computation (anomalous dimension)

Matching computation

At one loop one has:

This corrects the tree level OPE result

$\simeq \delta\left(\ell-Q e_{\text {pert }}\right)-Q e_{\mathrm{np}} \delta^{\prime}\left(\ell-Q e_{\text {pert }}\right)$
$\simeq \delta\left(\ell-Q e_{\mathrm{pert}}\right)-Q e_{\mathrm{np}} \delta^{\prime}(\ell-$
$\simeq \delta(\ell)-Q\left(e_{\mathrm{np}}+e_{\mathrm{pert}}\right) \delta^{\prime}(\ell)$

$$
\delta\left(\ell-Q e_{\mathrm{pert}}-Q e_{\mathrm{np}}\right)
$$

Full theory computation
Effective theory computation (anomalous dimension)

Same diagrams as for anomalous dimension computation, but different measurement

EFT diagrams have to be subtracted from full theory result

Matching coefficient compensates μ dependence of Ω_{1}

Matching computation

At one loop one has:

$$
\begin{aligned}
& \text { At one loop one has: } \\
& \begin{array}{cc}
\delta\left(\ell-Q e_{\mathrm{pert}}-Q e_{\mathrm{np}}\right) & \text { Ievel OPE result } \\
\simeq \delta\left(\ell-Q e_{\mathrm{pert}}\right)-Q e_{\mathrm{np}} \delta^{\prime}\left(\ell-Q e_{\mathrm{pert}}\right) & \text { Full theory computation } \\
\simeq \delta(\ell)-Q\left(e_{\mathrm{np}}+e_{\mathrm{pert}}\right) \delta^{\prime}(\ell) & \begin{array}{c}
\text { Effective theory computation } \\
\text { (anomalous dimension) }
\end{array} \\
\qquad \begin{array}{cc}
F_{e}(\ell)=\delta(\ell)+\int \mathrm{d} r C_{1}^{e}(\ell, r, \mu) c_{e} g_{e}(r) \Omega_{1}(r, \mu)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{\ell^{3}}\right) \\
C_{1}^{e}(\ell, r, \mu)=-\delta^{\prime}(\ell)+\frac{C_{A} \alpha_{s}(\mu)}{\pi} \ln \left(1-r^{2}\right) \frac{\mathrm{d}}{\mathrm{~d} \ell}\left(\frac{1}{\mu}\left[\frac{\mu}{\ell}\right]_{+}\right) \\
+\frac{\alpha_{s}(\mu)}{\pi} \delta^{\prime}(\ell) d_{1}^{e}(r)+\mathcal{O}\left(\alpha_{s}^{2}\right) & \text { explicitly checked }
\end{array} \\
\begin{array}{c}
\text { needs a full matching } \\
\text { computation }
\end{array}
\end{array}
\end{aligned}
$$

EFFECTS ON
 OBSERVABLES

Effect of hadron masses

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} e}=\frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} e} & -\frac{1}{Q}\left(\Omega_{1}^{e}(\mu)+\frac{\alpha_{s}(\mu)}{\pi} \Omega_{1}^{e, d}(\mu)\right) \frac{\mathrm{d}^{2} \hat{\sigma}}{\mathrm{~d} e^{2}}(e) \\
& +\frac{\Omega_{1}^{e, \ln }(\mu)}{Q} \frac{\alpha_{s}(\mu) C_{A}}{\pi}\left\{\ln \left(\frac{\mu}{e Q}\right) \frac{\mathrm{d}^{2} \hat{\sigma}}{\mathrm{~d} e^{2}}(e)\right. \\
& \left.-\int_{0}^{e Q} \frac{\mathrm{~d} \ell}{\ell}\left[\frac{\mathrm{~d}^{2} \hat{\sigma}}{\mathrm{~d} e^{2}}\left(e-\frac{\ell}{Q}\right)-\frac{\mathrm{d}^{2} \hat{\sigma}}{\mathrm{~d} e^{2}}(e)\right]\right\}
\end{aligned}
$$

Distribution

$$
\begin{aligned}
\langle e\rangle & =\langle e\rangle_{\text {pert }}+\frac{\Omega_{1}^{e}(\mu)}{Q}+\frac{\alpha_{s}(\mu)}{\pi} \frac{\Omega_{1}^{e, d}}{Q}+\frac{\Omega_{1}^{e, \ln }(\mu)}{Q} \frac{C_{A} \alpha_{s}(\mu)}{\pi} \\
& \times \int_{0}^{e_{\max }} \operatorname{de} \frac{1}{\hat{\sigma}} \frac{\mathrm{~d} \hat{\sigma}}{\mathrm{~d} e}(e)\left[\ln \left(\frac{\mu}{Q\left(e_{\max }-e\right)}\right)-\frac{e^{2}}{e_{\max }\left(e_{\max }-e\right)}\right]
\end{aligned}
$$

First moment

Effect of hadron masses

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma}{\mathrm{~d} e}= \frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} e}- \\
& \quad-\frac{1}{Q}\left(\Omega_{1}^{e}(\mu)+\frac{\alpha_{s}(\mu)}{\pi} \Omega_{1}^{e, d}(\mu)\right) \frac{\mathrm{d}^{2} \hat{\sigma}}{\mathrm{~d} e^{2}}(e) \\
&+\frac{\Omega_{1}^{e, \ln }(\mu)}{Q} \frac{\alpha_{s}(\mu) C_{A}}{\pi}\left\{\ln \left(\frac{\mu}{e Q}\right) \frac{\mathrm{d}^{2} \hat{\sigma}}{\mathrm{~d} e^{2}}(e)\right. \\
&\left.-\int_{0}^{e Q} \frac{\mathrm{~d} \ell}{\ell}\left[\frac{\mathrm{~d}^{2} \hat{\sigma}}{\mathrm{~d} e^{2}}\left(e-\frac{\ell}{Q}\right)-\frac{\mathrm{d}^{2} \hat{\sigma}}{\mathrm{de} e^{2}}(e)\right]\right\}
\end{aligned}
$$

usual shift

additional term (not a shift)

$$
\begin{array}{rll}
\langle e\rangle & =\langle e\rangle_{\text {pert }}+\frac{\Omega_{1}^{e}(\mu)}{Q}+\frac{\alpha_{s}(\mu)}{\pi} \frac{\Omega_{1}^{e, d}}{Q}+\frac{\Omega_{1}^{e, \ln }(\mu)}{Q} \frac{C_{A} \alpha_{s}(\mu)}{\pi} & \text { usual shift } \\
& \times \int_{0}^{e_{\max }} \mathrm{de} \frac{1}{\hat{\sigma}} \frac{\mathrm{~d} \hat{\sigma}}{\mathrm{~d} e}(e)\left[\ln \left(\frac{\mu}{Q\left(e_{\max }-e\right)}\right)-\frac{e^{2}}{e_{\max }\left(e_{\max }-e\right)}\right] & \text { additional term }
\end{array}
$$

Effect of hadron masses

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} e}=\frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} e} & -\frac{1}{Q}\left(\Omega_{1}^{e}(\mu)+\frac{\alpha_{s}(\mu)}{\pi} \Omega_{1}^{e, d}(\mu)\right) \frac{\mathrm{d}^{2} \hat{\sigma}}{\mathrm{~d} e^{2}}(e) \\
& +\frac{\Omega_{1}^{e, \ln }(\mu)}{Q} \frac{\alpha_{s}(\mu) C_{A}}{\pi}\left\{\ln \left(\frac{\mu}{e Q}\right) \frac{\mathrm{d}^{2} \hat{\sigma}}{\mathrm{~d} e^{2}}(e)\right. \\
& \left.-\int_{0}^{e Q} \frac{\mathrm{~d} \ell}{\ell}\left[\frac{\mathrm{~d}^{2} \hat{\sigma}}{\mathrm{~d} e^{2}}\left(e-\frac{\ell}{Q}\right)-\frac{\mathrm{d}^{2} \hat{\sigma}}{\mathrm{de} e^{2}}(e)\right]\right\},
\end{aligned}
$$

$$
\Omega_{1}^{e, d_{1}}(\mu)=\int \mathrm{d} r d_{1}^{e}(r) c_{e} g_{e}(r) \Omega_{1}(r, \mu)
$$

perturbatively suppressed another power correction

$$
\begin{aligned}
\langle e\rangle & =\langle e\rangle_{\mathrm{pert}}+\frac{\Omega_{1}^{e}(\mu)}{Q}+\frac{\alpha_{s}(\mu)}{\pi} \frac{\Omega_{1}^{e, d}}{Q}+\frac{\Omega_{1}^{e, \ln }(\mu)}{Q} \frac{C_{A} \alpha_{s}(\mu)}{\pi} \\
& \times \int_{0}^{e_{\max }} \mathrm{d} e \frac{1}{\hat{\sigma}} \frac{\mathrm{~d} \hat{\sigma}}{\mathrm{~d} e}(e)\left[\ln \left(\frac{\mu}{Q\left(e_{\max }-e\right)}\right)-\frac{e^{2}}{e_{\max }\left(e_{\max }-e\right)}\right]
\end{aligned}
$$

CONCLUSIONS

CONCLUSIONS

- Operator description of hadron mass effects.
- These effects break universality. Not a simple a correction.
- Set of privileged classes in which there is universality. Approximate universality among classes.

$$
\begin{aligned}
& \Omega_{1}^{C} \simeq \frac{3 \pi}{2} \Omega_{1}^{\tau} \\
& \Omega_{1}^{\text {HJM }} \neq 2 \Omega_{1}^{\tau}
\end{aligned}
$$

- Computation of anomalous dimension predicts $\log (\mathrm{Q})$ dependence. Complete matching computation is w.i.p.
- Small effect on fits to α_{s} : additional 0.0005 error.

BACKUP SLIDES

COMPARISONS TO PYTHIA AND HERWIG

Comparisons to MC generators

Define generalized angularities, useful to compare to MC

$$
\tau_{(n, a)} \equiv \sum_{i} m_{i}^{\perp} r_{i}^{n} e^{-\left|y_{i}\right|(1-a)}\left\{\begin{array}{l}
g_{(n, a)}=r^{n} \\
c_{(n, a)}=\frac{2}{1-a}
\end{array}\right.
$$

Comparisons to MC generators

Define generalized angularities, useful to compare to MC

$$
\tau_{(n, a)} \equiv \sum_{i} m_{i}^{\perp} r_{i}^{n} e^{-\left|y_{i}\right|(1-a)}\left\{\begin{array}{l}
g_{(n, a)}=r^{n} \\
c_{(n, a)}=\frac{2}{1-a}
\end{array}\right.
$$

We study the first moment of the distributions
Taking differences of classes we obtain:

$$
\Omega_{1}^{0}\left(\mu_{Q}\right)-\Omega_{1}^{n}\left(\mu_{Q}\right)=\frac{Q}{c_{a}}\left(\left\langle\tau_{(0, a)}\right\rangle-\left\langle\tau_{(n, a)}\right\rangle\right)
$$

Perturbative moment is class-independent and vanishes in the difference

Comparisons to MC generators

Define generalized angularities, useful to compare to MC

$$
\tau_{(n, a)} \equiv \sum_{i} m_{i}^{\perp} r_{i}^{n} e^{-\left|y_{i}\right|(1-a)}\left\{\begin{array}{l}
g_{(n, a)}=r^{n} \\
c_{(n, a)}=\frac{2}{1-a}
\end{array}\right.
$$

fit function basis $\quad\left\{1, r,(1-r)^{-\frac{1}{4}}\right\}$

Renormalon subtractions

There is a $u=\frac{1}{2}$ renormalon in Ω_{1}
It can be removed by appropriate subtractins

$$
B\left[\ln S_{e}^{\text {bubbles }}(x, \mu)\right](u)=c_{e} \frac{8 C_{F} e^{5 / 6}}{\pi \beta_{0}\left(u-\frac{1}{2}\right)}(i x \mu)
$$

a)
b)

f)

e)

c)

d)

$$
m 0 m=m+m O m+\cdots O m O m+\ldots
$$

Renormalon subtractions

There is a $u=\frac{1}{2}$ renormalon in Ω_{1}
It can be removed by appropriate subtractins

$$
\begin{array}{rll}
\hat{\sigma}_{e}(x) \rightarrow \tilde{\sigma}_{e}(x)=\hat{\sigma}_{e}(x) e^{-i x \delta_{e}(R, \mu) / Q} & \text { [Hoang \& Kluth] } \\
\delta_{e}(R, \mu)=\left.\frac{c_{e}}{c_{e^{\prime}}} R e^{\gamma_{E}} \frac{\mathrm{~d}}{\mathrm{~d} \ln (i x)} \ln S_{e^{\prime}}^{\mathrm{pert}}(x, \mu)\right|_{x=\left(i R e^{\gamma_{E}}\right)^{-1}} & & {[\text { VM,Thaler, Stewart] }}
\end{array}
$$

allows to compute the renormalon for all event shapes simultaneously

Renormalon inside

Renormalon free

