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Phenomenology of 
TMD’s 



 Transverse Momentum distributions are fundamental in 
the factorization of  DY at small qT and SIDIS and e+e- 
to 2j 

 Can we formulate their definition independently of the 
IR/collinear  regulators that we use? YES (Ahmad’s 
talk) 

 Are TMDs universal? See discussion 

 How do we  write the evolution of TMDs? Up to which 
order do we know  their evolution?  

We can up to NNLL..we could up NNNLL in some cases 

 Is the evolution of all quark TMDs the same?YES 

 Can we have  a model independent evolution of the 
TMDs?YES, no effective strong coupling is necessary 

Some questions …and our 
answers 
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TMDPDFs at Leading Twist 

Quark Polarization 
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Helicity Transversity 

Boer-

Mulders 

Sivers 

Worm-Gear 

Worm-Gear Pretzelosity 

Momentum 

• The only ones that survive in the collinear limit (when we integrate over 

qT) • They are T-odd 

• There are similar families for gluon-TMDPDFs and quark/gluon-TMDFFs  

• They are distributions that give us information about the inner structure of 

the nucleons 

[Mulders-Tangerman’96] 

[Boer-Mulders ’98] 
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Probabilistic Interpretation 

From a talk of A. Bacchetta 



Preliminaries… 

Diploma Thesis of 
A. Signori, 2012 
Compass Coll. 
Cern 
Preliminary data 



 The extraction of all TMD’s requires a  contemporary analysis of DY, 
SIDIS, e+e- to 2j. Different experiments (Hermes, Jlab, EIC?, Compass, 
Tevatron, LHC, LEP, Belle, Babar,…), different energies 

 The collinear and soft matrix element are the same in DY and SIDIS 

 

Universality of the TMD’s 

 The definition of  Wilson lines in  DY  and SIDIS is different 
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 Universality of the Soft  Function 

Universality of the unpolarized TMDPDF at 
one loop 
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Both Naive Collinear  And Soft ME Are 

Universal! 

Ergo, the unpolarized TMDPDF is Universal  

 Universality of the Collinear  Function 

EIS, JHEP  (2012) 

 



 For the Sivers  functions the universality is 
peculiar.  

Universality of the Sivers functions 
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 The  hadronic tensor is RG scale independent 

Evolution of the TMDPDF 
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The   hard coefficient is the same  as for inclusive DY! 

Ergo, 
WE KNOW THE AD of the 8 TMDPDF up to 3-LOOPS 

2 2 2 2 2( / ) | ( / ) |H Q C Q  Comes from the matching of 
currents: It is spin independent 



When qT is in the perturbative region the TMDPDF can be 
factorized in a Wilson coefficient and a PDF like in OPE 

OPE of the TMDPDF on to the PDF 
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The coefficient C works as any other Wilson coefficient 

IT  IS INDEPENDENT OF IR-SCALES 

 

BUT  THERE IS STILL A Q^2 DEPENDENCE 
2 2

2

/ 2

1 3
( ; , , ) (1 ) (1 ) (1 ) ln

2 2 2 12

s F
n q q T T T T

C Q
C x b Q x P L x x L L L

 
  

 

  
            

  

THESE TERMS HAVE TO BE RESUMMED!! 
2 2

2
ln

4 E
T

b
L

e









 Using Lorentz  invariance  and dimensional  analysis 

Q^2-Resummation 
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 Since the TMDPDF (Wilson coefficients and PDFs) is free 

from rapidity divergences to all orders in 

perturbation theory: 
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• From the fact that the TMDPDF is free from rapidity divergencies we can 

extract and exponentiate the Q2-dependence. 

Q2-Resummation 

• But we can also extract it just applying the RGE to the hadronic tensor: 

• The Q2-factor is extracted for each TMDPDF individually. 

• We do not need Collins-Soper evolution equation to resum the logs of Q2. 

• We know cusp AD at 3-loops, so we know D at 2-loops!! 

Independent 

of Q2!! 

( ) 2s cuspA   



 The  final form of the TMD in IPS is 

Q^2-Resummation 
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The cusp AD is known at 3-loops!! 

→ The function D is  known up to order ^2 



Resumming! 
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Order  cusp C D 

LL -  tree - 

NLL  ^ tree  

NNLL ^ ^3  ^ 

NNNLL ^3 ^4 ^ ^3 

Aybat, Collins , Qiu, Rogers; Aybat, Rogers;  Anselmino, Boglione,Melis 

Our Group 
Known pieces for 

unpolarized TMDs  from 

Catani et al. ‘ 12 And 

Gehrmann et al. ‘12 See  Thomas Lübbert talk 



 The hard matching coefficient H does not depend 
on spin! And its AD governs all evolution of the TMDs 
and also the evolution  of the D-function! (EIS+S, ´12) 
even when the TMDs do not match on PDFs 

The Evolution of all quark TMDs 
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THIS IS SPIN INDEPENDENT: 

Same evolution for all 8 TMD’s 

Up to NNLL! 
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Evolution Kernel 
• If we want to connect two TMDPDFs at two different scales: 

• The evolution is given in terms of the function D and the AD 

• When we Fourier transform back, we need to resum large logs in the D... 

• I will show you TWO methods: the “traditional” CSS and the one we propose. 
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Resummation of R: CSS 

Non-perturbative model (BLNY) 

Perturbative pieces 
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Resummation of R: CSS 

The Evolution Kernel with the effective 

coupling hits the Landau Pole!! :-( 
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Resummation of R à la CSS 

We impose a cutoff over b writing b*(b) instead of b. 

But we loose information at large b!! 



20 
• But there is a complete different way to resum the logs... 

Resummation of R: CSS 

We need to add a non-perturbative model in the evolution 

extracted from data... 
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D-Resummation 

• We are going to write D as a series and resum it directly: 

Recurrence  

relation 



D-Resummation 
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D-Resummation 
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New expansion! 



D-Resummation 

Properties of DR: 
● The  resummation works for all X<1 
● The sign of DR is the same at all orders (that we checked) 
● Asymptotically, when X→1 

Truncation of DR: 
● We can think to truncate DR when a/(1-X)~1 
● We have tried  the truncation at bc such that 

1 2( ) 1; ( ) / (1 ( )) 1; ( ) / (1 ( )) 0.2X c cX b a Q X b a Q X b    



Results 



Results 



Results 

In practice the TMD are concentrated on a region of IPS  
shorter than  the range of validity of the evolutor 

Hermes Compass Hermes Compass 



            Results 

All graphs show an agreement 

With the bmax=1.5 choice 

We compare with CSS and 

 bmax=0.5, Collins ideal 

 bmax=1.5, fitted from  

 Phenomenology 

 (Konychev, Nadolsky’06) 



We have a  formulation of  factorization on-the-light-cone 
(no parameters on any matching coefficient!) 

We can relate the AD of the  hard matching coefficient to 
the AD of the TMDPD’s             WE KNOW THE EVOLUTION 
OF ALL TMDPDF UP TO NNLL 

We can build an evolutor for TMDPDF  removing the 
problem of the Landau pole in a model independent way 
(agreement with fits that use bmax=1.5) 

We need experiments to get a mapping of TMDs as 
precise as for PDFs 

CONCLUSIONS 



BACKUP SLIDES 
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