Overview for Quantum Beam project at KEK

Junji Urakawa (KEK, Japan) at Tomsk Polytechnic University, 2012.8.14 Under development of Quantum Beam Technology Program(QBTP) supported by MEXT from 2008.9 to 2013.3 (5 years project)

Contents : 1. Introduction 2. STF Status 3. Status of basic technologies 4. New Laser Storage Scheme using ~10ps (FWHM) mode-locking 1µm laser with super-cavity and other 5. New plans and schedule

To stronger and brighter photon beam

 $Brightness = \frac{photons/sec}{(mrad)^2 (mm^2(source-area))(0.1\% spectrum-width)}$

10μm photon source is considered, which means 0.2 mmmrad normalized emittance. **1mrad angular spread collimation** means small energy spread.

High brightness X-ray

Quantum Beam Technology Program (QBTP) Development for Next Generation Compact High Brightness X-ray (563ACA38777) 18038. All RE26809477 (563ACA38777) 18038. All RE26809477 Source using Super Conducting RF Acceleration Technique 9-cell Accelerating cell Decelerating Cavity L-band RF Gun Beam Dum 2kille Refrigerator

Laser System for Multi-bunch Beam Generation

Characteristics of this device

Compact (less than 10m total length) Monochromatic (less than 1% energy spread) High flux (100 times compact normal conducting X-ray:10¹¹ photons/sec 1% b.w.) High brightness (2.5 generation photon factory:10¹⁷ photons/sec mrad² mm² 0.1% b.w.) Ultra-short pulse (40 fs ~)

Genome structural analysis, Evaluation of Nano-material, Precise fine X-ray Imaging

http://mml.k.u-tokyo.ac.jp/

Impact of compact high brightness X-ray

1) Performance of second generation photon factory is obtainable at experimental room.

2) sub-psec X-ray is obtainable at experimental room. \rightarrow research for fast dynamic phenomena

Chemical reaction in solvent, function of protein, destruction by impulse, phase transition induced by photon

3) isotope detection of radioactive nuclear wastes (solution of energy and environmental problems)

300MeV ERL or small storage ring is necessary.

To contribute the development for life science innovation and green innovation

Beam Dump

X-ray Detector

©Rey.Hori

RF Gun Laser

Quantum Beam Technology Program: Beam commissioning started from mid. of February.

Operation at STF control room

BPM and current monitor signals

Electron beam parameter

	QBTP	STF Phase 2
Pulse length	1 ms	0.9 ms
Repetition Rate	5 Hz	5 Hz
Bunch Spacing	6.15 ns	369.27 ns
	(162.5 MHz)	(2.708 MHz)
Number of	162500	2437
Bunch		
Bunch Charge	62 pC	3.2 nC
Total Charge	10,000 nC	7,798 nC
Beam Current	10 mA	8.7 mA
Bunch length	12 ps	10 ps
	(Laser, FWHM)	(Laser,
		FWHM)
Max beam	50 MeV	21.5 MeV
energy		
Beam power	Max 2.5 kW	0.8 kW
_	(50 MeV)	(21.5 MeV)
	Usually 2.0 kW	
	(40 MeV)	

1ms Flat Beam (30~40pC/bunch)⁸

Change to head collision scheme to get another enhancement of 5 and to increase laser pulse duration ~20ps.

 \mathbf{X}

Plan of X-ray generation by Inverse-compton scattering

Manufactured and Tested four 9-cell super conducting cavities

Recently, we operated the 9-cell cavity with **38MV/m**.

New fast switching for circular polarization X-ray

New laser storage scheme, so called 'self-starting oscillator scheme'

Finesse 5800, gain ~2000 was confirmed by generation of gamma-ray last year. Also, laser waist size was less than 15µm.

Change to 2D 4-mirror optical cavity

Two laser pulses are circulating with the spacing of 6.15ns in a ring optical cavity.

Laser System Development for Optical Cavity

NLPR passive mode lock oscillator (162.5MHz)

162.5MHz, 350fsec pulse duration, 43mW

High brightness X-ray generation by ERL Demonstration by beam experiment if possible

X-ray Imaging by I-MCP+I.I. and SOI Phase contrast X-ray imaging is next step at LUCX.

Future plan for LUCX accelerator

- To downsize the accelerator, we have planed to install a 3.6cell rf-gun and a 12cell booster.
 - ✤ 3.6cell rf-gun
 - Beam test has been started from Jan 2012.
 - 12cell booster
 - This booster is installed now.

Ju- 1011011

Microwave resonator cavity for soft X-ray generation

New optical cavity for hard X-ray generation

3m accelerating tube

2012/02/27

- Mintanii

12cell booster

1.6cell

Rf-gun

3.6cell

RF-gun

New Quantum Beam Technology Program(QBTP) supported by MEXT from 2013.4 to 2018.3 (5 years project)

Approved project should include two Japanese Companies at least and the development for CW super conducting acceleration technologies. Normal conducting accelerator system and super conducting accelerator system for compact high brightness X-ray source should be realized by joint research with companies.

Demonstration experiment for ERL

