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 INTRODUCTION



Coherent Radiation from a single
bunch

e Coherent radiation from a single bunch:
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e Bunch form-factor:

fi(@)=| dzexp[-i %219(2)



Gaussian form-factors

1e+21
1e+20 - 1nC, FWHM=2 ps

1e+19 - — 12.5pC, FWHM=0.2 ps
1e+18 - — 12.5pC, FWHM=0.5 ps
1e+17 -
1e+16 -

1e+15 -
1e+14 -
1e+13 -

1e+12 -
1e+11 -
1e+10

N_>*If |7

00 05 10 15 20 25 3.0 35 4.0 45 5.0
Frequency, THz



Coherent Radiation from a train of
bunches o
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Form-factor

CR spectrum
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Gaussian form-factors for several
bunches
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Frequency-locked CTR
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Smith-Purcell Radiation




Frequency-locked CSPR
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FIG. 1. SPR experimental setup. The train of bunched elec-
trons is traveling along the z direction above a metallic echelle
grating. The diffracted radiation is measured by a detector
located outside of the vacuum chamber.



Bunched CSPR power measurement
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FIG. 1. (Color) SPR experimental setup (not to scale) including the klystron, linac, deflecting cavities and screen, and the grating.



Bunched CSPR power measurement

TABLE I.  Smith-Purcell experiment parameters

Average current [, 80 mA
Train relativistic factor y 30 BunCh Charge 4'67 PC
Train frequency frr 17.140 GHz
Height above the grating, b, 2 mm
Bunch length o, 170 um
Grating period D, 2.54 mm
Blaze angle «a 30°
Number of periods, N, 20
Grating width, W 100 mm
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FIG. 3. (Color) Measured power density in W/sr (dots with error

bars). The measurement is compared to the first-order radiated ~ FIG. 4. (Color) First-order radiated power density calculated for
power density by the EFIE model (solid line). The power is ¢, = 0° by the EFIE model and Eq. (3) (solid line). This
plotted versus 6 when ¢, = 0° (a) and ¢, = 7.6° (b). In these  calculation was composed from the 6th (dotted line), 7th (dashed

figures, each arrow spans over a range of angles in which the  line), and 8th (dash-dotted line) harmonics of the accelerator
power is dominated by one discrete frequency (see Fig. 4). frequency.



Smith-Purcell radiation models

Resonant
diffraction
radiation model

Van den Berg

model (based
on grating
theory)

Polarization

adiation model

It is a big challenge to compare all models with
known experimental data and to find/create the
best one
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Polarization radiation
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Theory |

* Polarization radiation theory was
developed by D. V. Karlovets and A.P.
Potylitsyn:

I. D.V.Karlovets and A.P. Potylitsyn, JETP Lett. 2009,

Volume 90, Number 5, Pages 326-33 |

2. D.V.Karlovets, JETP, 201 |,Volume 113, Number I,
Pages 27-45



Theory 2

For non magnetic media a polarization current is a linear function of the
full field

j(r,w)par = o(r,w) (B + EP (jpa))

where:
o(r,w) = ((r,w) — 1)w/4mi.
Maxwell equations may be written as:
. 4
(,& + &(r, w)w—g) HP!(r, w) = il (J{r, wlrot B® —
& ¢

— (E' + EP?) x ?J{r,u)) ;

Unwanted term



Theory 3

For the simplest case of the flat vacuum-medium boundary:
[Tr:l'. -..J.a'j — f‘j[ﬁjﬂ'[w'ﬁ
And
(E° « EP?) x Vo(r,w) = o(w)d(2) (E? + EP?) x n

where n = {0,0,1} - Surface normal

Due to boundary conditions:

(ED*EPE']}I X 1]|:—.|] — E[I A Ik

The unwanted term disappears.



Theory 3

The exact solution of the Maxwell equations may be written as

following:
1 " Ez’ -.,/mm r-r|/ec
HP (1) = rot [ 007, 0)
Vi
where

j:ﬂ] — o(r,w)E’(r, w)

This is exact field of polarization radiation inside the target with
arbitrary permittivity. Additional manipulations are required to find the

field outside the target. One should use the reciprocity theorem and
Fresnel coefficients.



SUPER-RADIANT
SMITH-PURCELL
RADIATION MODEL



Smith-Purcell radiation model

In the case of ideal-conducting thin grating the radiation
field in far field assumption may be written as:

IEII." L] ]

ER(rg.w) = —i

0

k X / le:,' []_']_.ED{}’{J__ iy = (). :J_:)] (,—.r'ﬁ,';.:
J s




Smith-Purcell radiation spectrum

Smith-Purcell radiation

spectrum
Electron energy, E |0 MeV 0.0030 P
— 0=90deg
Grating period, d 300 um 0.0025 - —— 0 =288 deg
(2]
Number of strips, N 101 S 0.0020 |
o
Impact-parameter, h | mm i 0.0015 |
: On the f ]
Observation angle, 6 : g 00010
figure IS
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microbunches, A ¢



Smith-Purcell radiation gain due to
several microbunches

Smith-Purcell radiation

spectrum
Electron energy, E 10 MeV 0.04 P
— 1 bunch

Grating period, d 300 um —— 2 bunches

. £ 003 | —— 4 bunches
Number of strips, N 101 €
Impact-parameter; h | mm % 0.0
Observation angle, 6 90 degree =

C
Microbunch length, ¢ 0 E 0.01 4
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Radiation gain strongly depends on
bunching frequency...

Parameter Value

Electron energy, E,
Grating period, d
Number of strips, N
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Tilted grating

* For the first time was calculated by P. Karataev et al.
PHYSICAL REVIEW E VOLUME 61, NUMBER 6 JUNE 2000

Resonant diffraction radiation from an ultrarelativistic particle moving close to a tilted grating
A. P. Potylitsyn, P. V. Karataev.* and G. A. Naumenko
* The developed model allows calculation of spectral-angular

parameters of super-radiant Smith-Purcell radiation
generated by a tilted grating

Detector

Grating
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Parameter

Electron energy, E,
Grating period, d
Number of strips, N
Impact-parameter; h
Observation angle, 6
Microbunch length, o
# of microbunches, N,

Distance between
microbunches, A ¢

|0 MeV
300 um
101
| mm
90 deg
0
I



- CONCLUSION



Conclusion

e Smith-Purcell radiation intensity
significantly increases due to beam
microbunching at the frequencies that
correspond to the  microbunching

frequency.

e Microbunching frequency control and
diagnostics is really important.

* One may try to use the grating tilt for
such control.
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