General overview of THz project

2012.8.14 at Tomsk Polytechnic University Junji Urakawa (KEK, Japan)

Contents : 1. Introduction 2. Basic Technologies 2-1. High Gradient S-band RF Gun 2-2. Multi f-second Laser Pulse Train 3. Rough Evaluation by ASTRA and Genesis 4. Development Plan

1. Introduction : Compact THz Source

- **Terahertz radiation is an electromagnetic wave in the frequency interval from 0.3 to 10THz.**
- **A THz-FEL is a good candidate due to its characteristics of high peak brightness, short duration, and tunable wave length.**
- **However, the need for a huge facility and substantial funds limit THz-FEL development.**
- **Two important goals are to make the THz-FEL facility compact and to increase its output radiation power.**

2 **THz Peak power :10MW to 100MW** Less than 2m

A laser-driven RF gun with a **Cs2Te photocathode** has been developed at KEK **since 2002**. This gun has been operated as an electron source for the ATF and generates a beam with an operational intensity of up to **2**×**10¹⁰electrons per bunch**. In 2008, a new gun incorporating all of the earlier modifications was produced for the ATF. Tests have confirmed a significant improvement of the Q value of the latest model. A typical transverse emittance of **1.3 π mm⋅mrad at 80 MeV** has been obtained under the following conditions: solenoid field of 0.18 T, beam intensity of **1**×**10¹⁰ electrons per bunch**, and **RF power of 9 MW**.

2. Basic Technologies 2-1. High Gradient S-band RF Gun

1.3GeV ATF Linac, results at 80MeV beam.

Current (pC/pulse)

 $\sqrt{\frac{1}{n}}$

Fiber Laser System Development

3. Rough Evaluation by ASTRA and Genesis

Astra (**A S**pace Charge **Tr**acking **A**lgorithm) by K. Flottmann (DESY) Genesis by Sven Reiche (PSI)

We assume the peak RF field gradient at the cathode surface is 100MV/m, 200pC and the laser injection phase is 20 degree. The bunching factor at 2THz is still high ,0.446 at the wiggler entrance, see next figure. $P = P_1[N_e + N_e(N_e-1)B(f)],$ $B(f) = \sum \exp(i2\pi f z_j/c)/N_e$, $\lambda_r = \lambda_w (1 + K^2)/(2\gamma^2)$

Above shows bunching factor dependence at the wiggler entrance on laser injection phase.

Right figure shows bunching factor dependence on total charge assuming Micro-bunch charge is uniform. We need higher gradient acceleration, lower total charge and about 20 degree laser injection phase to keep a high bunching factor.

For example, we assume the peak field gradient at the cathode surface is 120MV/m and laser injection phase 20 degree. Then, electron beam energy is 5.68MeV. Also, we consider the wiggler period length 30mm and $2THz$ radiation (wave length $150 \mu m$). $y=12$, K=0.873.

7 **14 MW peak power at 0.3m position**

 $\overline{11111}$ $6\times10'$ 5×10^7 immhmmmhmmhmmmhmm 4×10^{7} **60MW at 0.4m** \sum_{α} 3×10⁷ 25pC/0.136ps=184A, 2×10^7 injection phase 20 degrees 1×10^7 **140MV/m, 6.66MeV** 3.0 0.0 0.5 10 1.5 2.5 20 z [m]

 $P = P_1[N_e + N_e(N_e-1)B(f)], \quad B(f) = \sum \exp(i2\pi fz_j/c)/N_e,$ $\lambda_r = \lambda_w (1 + K^2)/(2\gamma^2)$, K: tune the gap to make the resonance.

High gradient acceleration: shorter bunch length (100MV/m-140MV/m) earlier laser injection phase: high bunching factor High Peak Power radiation(20- \rightarrow 10- \rightarrow 1)

THz peak power 100MW generation will be possible. **High gradient acceleration gun is essential. 100**m**J/pulse THz source will be 1mJ-fs laser**

We have to take care the shielding effect to CSR, maybe.

For example, we assume the peak field gradient at the cathode surface is 120MV/m and laser injection phase 20 degree. Then, electron beam energy is 5.68MeV. Also, we consider the wiggler period length 30mm and $2THz$ radiation (wave length $150 \mu m$). g=12, K=0.873

Uniform laser size on cathode 1.0mm ϕ , total charge $25pC$

170 fs (FWHM), peak current=147A

My colleague, Prof. Yan of Osaka University, demonstrated the generation of 100fs single electron bunched beam and obtained the single-shot Ultrafast Electron Diffraction (UED) using our RF gun cavity. In this experiment, the time resolution was 20fs in sigma.

14 MW peak power at 0.3m position

Electron beam: **3 pC, 3 MeV**, 10 Hz operation Sample: ~180nm-thick **single-crystal Si**

The single-shot measurement was succeeded

Simulation results

 0.05

4. Development Plan

Essential points :

Pre-bunched FEL, Dynamical bunching in RF gun cavity which means faster laser injection phase less than 20 deg., Micro-bunch spacing should be matched to wavelength, Late micro-bunch makes the bunching of former micro-bunches in resonated Undulator.

Time structure of 4 micro laser train for 500GHz super radiation from Undulator

500GHz microwave generation Generation of Comb beam in the RF Gun Cavity

Problem: beam loading effect due to multi micro-bunch and tuning on undulator field by pole-gap which makes the FEL resonance.

If we accept low micro-bunch charge, say 100pC or less, and not many micro-bunch, say 10 or less, above problems can be overcame.

50MeV S-band accelerator LUCX

THz Detector and Imaging Developments

Recent plan for LUCX accelerator

- To downsize the accelerator, we have planed to install a 3.6cell rf-gun and a 12cell booster.
	- 3.6cell rf-gun
		- Beam test has been started from Jan 2012.
	- * 12cell booster
		- This booster is installed now.

NLPR passive mode lock oscillator (162.5MHz)

162.5MHz, 350fsec pulse duration, 43mW

1.3GHz seed laser produced by optical resonator and fiber oscillator.

If we use high finesse thin optical cavity, we can generate micro bunches train within 8psec.

For example, two mirror cavity with the distance of 300 μ m can **generate laser pulse train with pulse spacing of 2psec.**

Yb doped Photonic Crystal Fiber

Fiber based amplifier has been chosen for ٠

- high efficiency ٠
- easier heat treatment
- good mode quality
- As a first choice
	- DC-200-40-PZ-Yb: most popular one
	- 976nm pump: for efficiency
- **Test items**
	- Test amplification at 1064nm, this wavelength is not optimal for Yb.
	- Model and understand the system. Optimize ٠ the length of fiber.
	- Non linearity at high power.

Pump optics

- Pump light used for test. (we used this because we got ¥ this for free.)
- Fiber output 75W LD (Jenoptik) ٠
- Fiber core is 400μ m, this should be input to PCF 1st ¥ crad of $200 \mu m$.
- Imaging lens system designed for x0.46 magnification.
	- acceptance : 3 - σ in NA, 2- σ in area. seems ok.
- Feeling 200μ m LD should be better if available. (now ordering at LIMO and DILAS)

図1:設計した光学系

Features:

. High optical output power of 75 W cw

· Fiber core diameter: 400 um (NA 0.22)

図 5: ビーム経測定のセットアップ

Set-up for fiber amplification test

19 **Pulse duration from 100fs to 400fs using fiber laser is generated by simple system.**

LUCX "2012 UPGRADE": THZ, 12-CELL BOOSTER

THz collaboration

TPU-KEK-RHUL Workshop on THz radiation generation 21