Cavity Optimization for Compact Acceleratorbased Free-electron Maser

Dan Verigin TPU In collaboration with A. Aryshev, S. Araki, M. Fukuda, N. Terunuma, J. Urakawa KEK: High Energy Accelerator Research Organization

P. Karataev John Adams Institute at Royal Holloway, University of London

> G. Naumenko, A. Potylitsyn, L. Sukhikh Tomsk Polytechnic University

> > K. Sakaue Waseda University

Energy	$30 \text{ MeV} (\gamma = 62)$
Intensity	1 nC/bunch
Num. of Bunches	100
Bunch spacing	2.8 ns
Bunch length	<10 ps
Repetition rate, nominal	3.13 Hz
Emittance (round)	5π mm•mrad
$\sigma_x \sigma_y$ in SCDR chamber	200 μm, 200 μm

LUCX, compact linear accelerator

S. Liu, M. Fukuda, S. Araki, N. Terunuma, J.Urakawa, K. Hirano, N. Sasao, Nuclear Instruments and Methods A 584 (2008) 1-8.

- 2 6-way crosses
- 2 4D vacuum manipulation systems
- 2 aluminum mirrors

CDR on LUCX

M.I. Markovic, A.D. Rakic. Determination of optical properties of aluminium including electron reradiation in the Lorentz-Drude model. Opt.and Laser Tech., v. 22, No. 6, 394-398, 1990.

R.T. Kinasewitz, B.Senitzky. Investigation of complex permittivity of n-type silicon at millimeter wavelengths. J. Appl. Phys., v. 54, No. 6, 3394-3398, 1983.

Transmission calculation

Material	Transmission coefficient	
	Experiment	Theory
Aluminized mirror	0	0
Doped silicon	0.42	0.42
Normal silicon	0.45	0.42

Mirror test bench

Mirrror diameter = 100 mm Thickness of Si substrate should be more than 100 mkm for durability

- $E_{SCDR} = a E_{Cav}$ addition to electric field by stimulation (depends on electric field stored in cavity)
- E_{DR} electric field generated by single bunch
- d loss in resonator
- $E_{tot,2} = d E_{DR} + E_{DR} + ad E_{DR} = E_{DR} (1 + d (1+a)) = E_{DR} (1+b) electric field in resonator after second bunch$
- E_{tot,i} = E_{DR} (1-bⁱ)/(1-b) electric field in resonator after i-th bunch

Chitrlada Settakorn, Michael Hernandez, and Helmut Wiedemann Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, SLAC-PUB-7587 August 1997

E_{tot,i} = E_{DR} (1-b^N)/(1-b) d^{i-N} – where N is number of bunches in train (i>N)

Thank you for attention