ELENA transfer lines studies

TE-ABT-BTP

Glenn Vanbavinckhove and Wolfgang Bartmann

Table of contents

- Geometry
- Layout
- Power converters

Geometry

- In total about 62 m of transfer lines (excluding Gbar).
- 5 large horizontal bending angles of 51°.
- 2 large vertical bending angles of 90° for ATRAP experiment.
- 4/5 "switch-yards".

Geometry Extraction from main line

Geometry

- Possible constraints:
 - ALPHA
 - ASACUSA 1
 - Additional experiment (Zone LNE01)
 - ATRAP 1 & 2(?) (height of focal point)

Layout

Current extraction line (ASACUSA, ATRAP, AEGIS)

Aperture considerations

- Aperture guideline:
 - 200 mm diameter pipe dimension.
- Electrode distance:
 - 60 mm
 - Has to be investigated if we can keep it with the high momentum spread.

 Sensitivity studies on field, alignment errors and magnetic stray fields will define these values

Power converters (preliminary) Dipoles (n=~30,L=40 cm):

- ~6 bends for two vertical lines of ATRAP.
- ~24 bends for lines ASACUSA, ATRAP, AEGIS, ALPHA.
- Voltage range between 9 kV and 20 kV (for 1 m bend).
- Any limit on power converters (20 kV reasonable?)
- Orbit correctors (n=~60,L=~10 cm):
 - ~30 orbit correctors in the FODO cells (~15 per plane).
 - ~30 orbit correctors in the matching and triplet sections (~15 persplane).

Power converters (preliminary)

- Quadrupoles (n=~66,L=10cm):
 - ~30 quadrupoles at a Voltage of ~1700 V.
 - ~18 quadrupoles for matching sections (Voltage range between 400 V and 5000 V).
 - ~6 triplet assemblies (Voltage range between 800 V and 7000 V).
 - Any limit on power converters (>15 kV?).

Conclusions

- Basic geometry has been defined:
 - Some constraints are identified.
 - Has to be explored if ALPHA can go under ATRAP. Depending on the magnetic measurements.
 - Dense population of elements near matching sections and triplets/bends.
 - Need to carefully look into space for vacuum pumps.

 Basic count for number dipoles, quadrupoles and orbit correctors.