

post discovery of a new (Higgs?) boson.

Oliver Buchmüller (Imperial College London & Senior LPC Fellow 2012)

• Introduction Higgs, SUSY and the LHC

- Recent results from the SM Higgs search
 - Landscape of SUSY searches Today

1 August 2012

Imperial College London

Fundamental Open Question in Particle Physics

I. Is there a new symmetry - Supersymmetry ?

- Can we get experimental evidence to support the Grand Unification of all fundamental forces?
- What is the origin of Dark Matter in the Universe?
 → Is a fundamental particle responsible for it?

II. What is the origin of mass?

- Why are the vector bosons Z and W are massive whereas the photon is massless?
- Is there a Higgs boson or even more of them ?

III. What is the origin of the matter-anti-matter

asymmetry in our Universe?

- Does the answer lie in in CP violation?
- Neutrino masses and mixing how do they fit in the picture?

"SUSY post-Higgs discovery" O. Buchmüller

Imperial College London

The Standard Model of Particle Physics

Over the last 100 years: combination of Quantum Mechanics and Special Theory of relativity along with all new particles discovered has led to the Standard Model of Particle Physics (SM). The new (final?) "Periodic Table" of fundamental elements

- Matter is composed of spin-1/2 fermions Three families of quarks and three families of lepton - of increasing masses, 'normal' matter is made of the first family
- Interactions (strong nuclear, electromagnetic, weak nuclear) are carried by exchange of spin-1 bosons (gluons, photons, weak bosons)
- Very successful description of physics at the scale of ~ 100GeV

The Standard Model of Particle Physics

Over the last 100 years: combination of Quantum Mechanics and Special Theory of relativity along with all new particles discovered has led to the Standard Model of Particle Physics (SM). The new (final?) "Periodic Table" of fundamental elements

A crowning achievement of 20th Century Science

Yet, its most basic mechanism, that of granting mass to particles, is (was?) missing. Quantum of this field is the Spin Zero Higgs boson.

Supersymmetry

Extension of the Standard Model: Introduce a new symmetrySpin ½ matter particles (fermions) Spin 1 force carriers (bosons)Standard Model particlesSUSY particles

Supersymmetry

Extension of the Standard Model: Introduce a new symmetry Spin $\frac{1}{2}$ matter particles (fermions) \Leftrightarrow Spin 1 force carriers (bosons) Standard Model particles **SUSY** particles

London

Why is SUSY so Attractive?

1. Quadratically divergent quantum corrections to the Higgs boson mass are avoided

(Hierarchy or naturalness problem)

- 2. Unification of coupling constants of the three interactions seems possible
- 3. SUSY provides a candidate for dark matter,

The lightest SUSY particle (LSP)

4. A SUSY extension is a small perturbation, consistent with the electroweak precision data

"SUSY post-Higgs discovery" O. Buchmüller

 $m_{SUSY} \sim 1 \text{ TeV}$ $\Delta m_H = f(m_B^2 - m_f^2)$ 60 $1/\alpha_1$ ohne Supersymmetrie 50 40 $1/\alpha$, 30 20 mit Supersymmetrie 10 $1/\alpha$ | | | . . 0 10⁵ 10¹⁰ 10¹⁵ energy (GeV) exclude 40 100 200 MHiggs (GeV)

Groundbreaking Work in 1964 !

"Electroweak Symmetry Breaking Mechanism" 2010 Sakurai Prize of American Physical Society R. Brout, F. Englert, P. Higgs, G. Guralnik, C. Hagen, T. Kibble

"SUSY post-Higgs discovery" O. Buchmüller

The Large Hadron Collider at CERN

Letter of Intent: Submitted to the CERN's Peer Review Committee (LHCC)

Letter of Intent by the CERN/LHCC 92-3 LHCC/I 1 1 October 1992

20 years ago

CMS Collaboration

for a General Purpose Detector at the LHC

We propose to build a general purpose detector designed to run at the highest luminosity at the LHC. The CMS (Compact Muon Solenoid) detector has been optimized for the search of the SM Higgs boson over a mass range from 90 GeV to 1TeV, but it also allows detection of a wide range of possible signatures from

LHC and CMS Timeline

- 1984 Workshop on a Large Hadron Collider in the LEP tunnel, Lausanne
- 1987 Rubbia "Long-Range Planning Committee" recommends Large Hadron Collider as the right choice for CERN's future
- 1990 ECFA LHC Workshop, Aachen (CMS design first presented)
- 1992 General Meeting on LHC Physics and Detectors, Evian les Bains
- 1993 Letters of Intent (ATLAS and CMS selected by LHCC)
- 1994 Technical Proposals Approved
- 1996 Approval to move to Construction (ceiling of 475 MCHF)
- 1998 Memorandum of Understanding for Construction Signed
- 1998 Construction Begins (after approval of Technical Design Reports)
- 2000 CMS assembly begins above ground. LEP closes
- 2004 CMS Underground Caverns completed
- 2008 CMS ready for LHC beams. The LHC incident 19th Sept
- 2009 CMS records first collisions

LHC and CMS Timeline

1984 Workshop on a Large Hadron Collider in the LEP tunnel, Lausanne

- 1987 Rubbia "Long-Range Planning Committee" recommends Large Hadron Collider as the right choice for CERN's future
- 1990 ECFA LHC Workshop, Aachen (CMS design first presented)
- 1992 General Meeting on LHC Physics and Detectors, Evian les Bains
- 1993 Letters of Intent (ATLAS and CMS selected by LHCC)
- 1994 Technical Proposals Approved
- 1996 Approval to move to Construction (ceiling of 475 MCHF)
- 1998 Memorandum of Understanding for Construction Signed
- 1998 Construction Begins (after approval of Technical Design Reports)
 2000 CMS assembly begins above ground. LEP closes
 2004 CMS Underground Caverns completed
 2008 CMS ready for LHC beams. The LHC incident 19th Sept
 2009 CMS records first collisions

"SUSY post-Higgs discovery" O. Buchmüller

Performance: CMS and LHC

The CMS detector is performing according to (beyond) design! 99% of the channels operational

High Data recording efficiency 2012 certified for ICHEP2012 'Golden': 5.19 fb⁻¹ (85%) Muon: 5.62 fb⁻¹ (92%)

CMS Total Integrated Luminosity, p-p

10

Computing:

Tens of petbytes/year 400M jobs/month

"SUSY post-Higgs discovery" O. Buchmüller

LHC currently running at 600 million proton-proton interactions/s!)

01/09

Time in year

02/07

Imperial College London

02/05

Standard Model (Electroweak) Measurements

Imperial College London

Re-Discovery of the Standard Model

Standard Model Higgs Boson

Standard Model Higgs Boson

Standard Model Higgs Boson

Pre-LHC:
> mh(SM)<161 GeV</p>
preferred @ 95% CL from
EWK Fit
> mh(SM)< 114 GeV</p>
excluded @ 95% CL from
direct searches at the LEP
> mh(SM) [156, 177] GeV
excluded @ 95% CL from
direct searches at the Tevatron

The preferred mass region of a SM-like Higgs was below 200 GeV (and above 114 GeV).

"SUSY post-Higgs discovery" O. Buchmüller

Imperial College London

SM-like Higgs Boson

SM Higgs Boson Production

SM Higgs Boson Decay

2011 Data: Status of Search for the SM Higgs Boson

Dec'11 we said: an excess of events is observed around 126(125) GeV with a global significance of 2.2σ (2.1σ) in ATLAS (CMS) More data are needed to ascertain the origin of the observed excess

2011+2012: CMS Discovery Potential

γγ Mass Distribution from CMS

• Sum of mass distributions for each event class, weighted by S/B

Observe a peak at 125.3 GeV

Local significance Expected: 2.8σ Observed: 4.1σ

Fitted signal strength 1.6±0.4 × SM

As particle seen in di-photon mode it must have spin 0 or 2

γγ Mass Distribution from ATLAS

Observe a peak at 126.5 GeV

Local significance Expected: 2.4σ Observed: 4.5σ

Fitted signal strength 1.9±0.5 × SM

Results for the Search $H \rightarrow \gamma \gamma$

Imperial College 26 London

Results: M(4I) spectrum

Search in the ZZ → 4I channel:

Expected exclusion at 95% CL : 121-550 GeV Observed exclusion at 95% CL : 131-162 GeV and 172-530 GeV Expected local significance at 125.5 GeV : 3.8 σ Observed local significance at 125.5 GeV: **3.2 σ**

Search in the ZZ → 4I channel: ATLAS

Expected local significance at 125.5 GeV : 2.6 σ Observed local significance at 125.5 GeV: **3.4 σ**

Characterization of the Excess

Combination of high sensitivity, high mass resolution channels: $\gamma\gamma + 4I$

Characterization of the Excess

Combination of high sensitivity, high mass resolution channels: $\gamma\gamma + 4I$

CMS Local significance Observed: γγ : 4.1σ 4 leptons : 3.2σ

CMS combined local significance Expected: 4.7σ Observed: 5.0σ

ATLAS combined local significance Expected: 4.6σ Observed: 5.0σ

CMS Characterization of the Excess

Combining all channels together

CMS combined local significance Expected: 5.9σ Observed: 4.9σ

ATLAS combined local significance (only : γγ + 4 2012 so far) Expected: 4.6σ Observed: 5.0σ

What a 125 GeV Higgs would have to offer...

about the nature of such a particle!

A New Boson but is a/THE Higgs?

"SUSY post-Higgs discovery" O. Buchmüller

Imperial College London

A New Boson but is a/THE Higgs?

"It is very much a smoking duck that walks and quacks like the Higgs. But we now have to open it up and look inside before we can say that it is indeed the Higgs." [OB to Reuters]

A New Boson but is a/THE Higgs?

"It is very much a smoking duck that walks and quacks like the Higgs. But we now have to open it up and look inside before we can say that it is indeed the Higgs." [OB to Reuters]

Need to measure the underlying properties of the new boson. Work on this has just started and it will take some time
First Mass Measurement

"SUSY post-Higgs discovery" O. Buchmüller

Compatibility with the SM Higgs Boson

"SUSY post-Higgs discovery" O. Buchmüller

Compatibility with the SM Higgs Boson

Event yields in different decay modes are self-consistent within the errors

The Tevatron search for the SM Higgs Boson

Tevatron Run II Preliminary, $L \le 10.0 \text{ fb}^{-1}$

The discovery of a new boson

CMS has observed a new boson with a mass of **125.3 ± 0.6 GeV** at a significance of 5 standard deviations, strongest in γγ and 4-charged lepton modes

Independently, ATLAS has observed a new boson at a similar mass (**126.5 GeV**) at a significance of 5 standard deviations, strongest in γγ and 4-charged lepton modes

Search for SUSY

"SUSY post-Higgs discovery" O. Buchmüller

What do we call a "SUSY search"?

The definition is purely derived from the experimental signature. Therefore, a "SUSY search signature" is characterized by Lots of missing energy, many jets, and possibly leptons in the final state

Missing Energy:

from LSP

Multi-Jet:

• from cascade decay (gaugino)

Multi-Leptons:

from decay of charginos/neutralios

RP-Conserving SUSY is a very prominent example predicting this famous signature but ...

What is its experimental signature?

... by no means is it the only New Physics model predicting this experimental pattern. Many other NP models predict this genuine signature

Missing Energy:

• Nwimp - end of the cascade

Multi-Jet:

• from decay of the Ns (possibly via heavy SM particles like top, W/Z)

Multi-Leptons:

• from decay of the N's

Model examples are Extra dimensions, Little Higgs, Technicolour, etc but a more generic definition for this signature is as follows.

Early Search Strategy (2010+2011)

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite-sign di-lepton + jets + MET	Same-sign di- lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET

- Generic missing energy signatures
- Categorised by numbers of leptons and photons
- ➤ Many include jet requirement → strong production

Early Search Strategy (2010+2011)

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite-sign di-lepton + jets + MET	Same-sign di- lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET

- Very challenging due to large amount and wide range of backgrounds
- However most sensitive search for strongly produced SUSY
- CMS pursues several complementary strategies based on kinematics and detector understanding
- > Extend to b, τ and top-tagged final states

First SUSY Search of the LHC

The "QCD killer"
$$a_T = \frac{E_{T j2}}{M_{T j1j2}} = \frac{\sqrt{E_{T j2}/E_{T j1}}}{\sqrt{2(1 - \cos\Delta\phi)}} \le 0.5$$

- Event selection:
 - Require >=2 jets with p_T >50 GeV
 - leading 2 jets with $p_{\tau} > 100 \text{ GeV}$
 - Scalar sum of jet p_T , $H_T > 350$ GeV
 - Explicit veto on
 - isolated el/mu with p_T>10 GeV
 - photons with $p_T > 25 \text{ GeV}$
 - $\alpha_{T} > 0.55$

• QCD multijet events eliminated

						<u> </u>
Selection	Data	SM	QCD multijet	$Z \rightarrow \nu \bar{\nu}$	W + jets	tī
$H_{\Upsilon} > 250 \text{GeV}$	4.68M	5.81M	5.81M	290	2.0k	2.5k
$E_{T}^{ip} > 100 \text{ GeV}$	2.89M	3.40M	3.40M	160	610	830
$H_{\Upsilon} > 350 \mathrm{GeV}$	908k	1.11M	1.11M	80	280	650
$\alpha_T > 0.55$	37	30.5 ± 4.7	19.5 ± 4.6	4.2 ± 0.6	3.9 ± 0.7	2.8±0.1
$\Delta R_{\text{ECAL}} > 0.3 \lor \Delta \phi^* > 0.5$	32	24.5 ± 4.2	14.3 ± 4.1	4.2 ± 0.6	3.6 ± 0.6	2.4±0.1
$R_{\rm miss} < 1.25$	13	9.3±0.9	0.03 ± 0.02	4.1 ± 0.6	3.3±0.6	1.8 ± 0.1

"SUSY post-Higgs discovery" O. Buchmüller

Exclusion in the CMSSM

- CMSSM: 4 parameter model assuming common gaugino and scalar masses at GUT scale (m_{1/2}, m₀)
- In absence of signal, calculate 95% CL exclusion limit using Feldman-Cousins
- tanβ independent exclusion

"

Exclude squark and gluino masses of ~550-650 GeV in CMSSM

 Selection efficiency approximately production-process independent

Production mechanism	Yields for 35 pb ⁻¹	$\epsilon_{\text{total}}(\%)$	$\epsilon_{signature}(\%)$
ã ã	9.7±0.1	16.0 ± 0.1	22.2±0.4
ã ĝ	8.8±0.1	14.4 ± 0.1	23.0 ± 0.5
Ĩ Ŝ	0.71±0.02	12.0 ± 0.4	22.5±2.0

• 12% uncertainty on signal efficiency, dominated by 11% luminosity uncertaint

ATLAS: Jets+E^{miss}

		Α	В	С	D
Pre-selection	Number of required jets	≥ 2	≥ 2	≥ 3	≥ 3
	Leading jet p_T [GeV]	> 120	> 120	> 120	> 120
	Other jet(s) $p_{\rm T}$ [GeV]	> 40	> 40	> 40	> 40
	$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	> 100	> 100	> 100	> 100
tion	$\Delta \phi$ (jet, $\vec{P}_{\rm T}^{\rm miss}$) _{min}	> 0.4	> 0.4	> 0.4	> 0.4
Final select	$E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}$	> 0.3	-	> 0.25	> 0.25
	$m_{\rm eff}$ [GeV]	> 500	-	> 500	> 1000
	m_{T2} [GeV]	-	> 300	_	-

Define search in categories to cover different signatures and to improve sensitivity (e.g. in CMSSM).

"SUSY post-Higgs discovery" O. Buchmüller

Imperial College London

Jets+E_T^{miss}: (Today)

Inclusive SUSY Searches

Imperial College London

Inclusive SUSY Searches

"SUSY post-Higgs discovery" O. Buchmüller

Imperial College London

Additional Interpretation

CMSSM

What we see is much more simple...

Simplified Model Spectra

Refining SUSY Search Strategy

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite-sign di-lepton + jets + MET	Same-sign di- lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET

- Focus more on 3rd Generation squark searches
 - > Both interpretation of inclusive searches as well as dedicated searches

Example: "Natural SUSY" Use argument that light Higgs needs new physics to stabalise mass, which in turn motivates existences of a stop like particle.

Spectrum is model dependent but overall a good guideline for 3rd generation squark searches

Stop searches

Mixture of dedicated signature searches as well as • inclusive searches with b-tagging

> Example CMS: add 0,1,2,>2 b-tag categories to inclusive α_{T} search

Stop Searches Today

Nice summary plot from ATLAS ...

SUSY Today – Only Limits!

		ATLAS SUSY	Searches* - 95% CL Lower Limits (Status: I	ICHEP 2012)
	MSUGRA/CMSSM : 0 lep + i's + F		1 de tay a = a mass	
	MSUGRA/CMSSM : 1 lep + i's + $E_{T,miss}$	$l = 4.7 \text{ fb}^{-1}$ 7 TeV [ATLAS-CONF-2012-033]	1 20 TeV $\tilde{\mathbf{q}} = \tilde{\mathbf{q}}$ mass	f
S	MSUGRA/CMSSM : 0 lep + multijets + E_{π}	1 =4.7 fb ⁻¹ , 7 TeV [1206.1760]	840 GeV Q mass (large m.)	$Ldt = (0.03 - 4.8) \text{ fb}^{-1}$
2	Pheno model : 0 lep + i's + E_T miss	/ =4.7 fb ⁻¹ , 7 TeV [ATLAS-CONE-2012-033]	1.38 TeV 0 000 (m/g) < 2 TeV lin	untr ²) Is = 7 TeV
20	Pheno model : 0 lep + i's + E _{T miss}	L=4.7 fb ⁻¹ , 7 TeV IATLAS-CONF-2012-0331	940 GeV $\tilde{\mathbf{Q}}$ mass $(m(\tilde{\mathbf{Q}}) < 2$ TeV, light $\overline{\mathbf{y}}^0$)	
)	Gluino med. $\tilde{\gamma}^{\pm}(\tilde{q} \rightarrow q \bar{q} \tilde{\gamma}^{\pm})$: 1 lep + i's + E_{π}	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-041]	900 GeV $\tilde{\mathbf{q}}$ mass $(m(\bar{\tau}^0) < 200 \text{ GeV}, m(\bar{\tau}^{\pm})$	$=\frac{1}{2}(m(\overline{\chi}^{\circ})+m(\widetilde{q}))$ ATLAS
	GMSB : 2 lep OSSF + ET miss	L=1.0 fb ⁻¹ , 7 TeV [ATLAS-CONF-2011-156]	810 GeV $\tilde{\mathbf{g}}$ mass $(\tan\beta < 35)$	Preliminary
	GMSB : $1-\tau + j's + E_{T,min}$	L=2.1 fb ⁻¹ , 7 TeV [1204.3852]	920 GeV \tilde{g} mass $(\tan\beta > 20)$	
	GMSB : $2-\tau + j's + E_{T,miss}^{\gamma,mas}$	L=2.1 fb ⁻¹ , 7 TeV [1203.6580]	990 GeV \tilde{g} mass $(tan\beta > 20)$	
	$GGM: \gamma\gamma + E_{T,miss}^{\gamma,mas}$	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-072]	1.07 TeV \tilde{g} mass $(m(\chi^0) > 50 \text{ GeV})$	
	$\tilde{g} \rightarrow b \tilde{b} \tilde{\chi}$ (virtual \tilde{b}) : 0 lep + 1/2 b-j's + $E_{T miss}$	L=2.1 fb ⁻¹ , 7 TeV [1203.6193]	900 GeV \tilde{g} mass $(m(\chi^0) < 300 \text{ GeV})$	
00	$\tilde{g} \rightarrow b \tilde{b} \tilde{\chi}^0$ (virtual \tilde{b}) : 0 lep + 3 b-j's + $E_{T miss}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-058]	1.02 TeV \tilde{g} mass $(m(\chi^0) < 400 \text{ GeV})$	
liate	$\tilde{g} \rightarrow b \tilde{b} \tilde{\chi}^0$ (real \tilde{b}) : 0 lep + 3 b-j's + $E_{T miss}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-058]	1.00 TeV \widetilde{g} mass $(m(\chi_{1}^{O}) = 60 \text{ GeV})$	
1ed	$\tilde{g} \rightarrow t\bar{t} \tilde{\chi}_{e}^{0}$ (virtual \tilde{t}) : 1 lep + 1/2 b-j's + $E_{T miss}$	L=2.1 fb ⁻¹ , 7 TeV [1203.6193]	710 GeV \widetilde{g} mass $(m(\chi_1^0) < 150$ GeV)	
0 11	$\tilde{g} \rightarrow t \tilde{\chi}_{u}^{0}$ (virtual \tilde{t}) : 2 lep (SS) + j's + $E_{T,miss}$	L=2.1 fb ⁻¹ , 7 TeV [1203.5763]	650 GeV \widetilde{g} mass $(m(\overline{\chi}_{1}^{0}) < 210 \text{ GeV})$	
nin a	$\tilde{g} \rightarrow t\bar{t} \chi^{0}_{4}$ (virtual \tilde{t}): 0 lep + multi-j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [1206.1760]	870 GeV \widetilde{g} mass $(m(\chi_1^0) < 100 \text{ GeV})$	
6	$\tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_{s}^{0}$ (virtual \tilde{t}) : 0 lep + 3 b-j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-058]	940 GeV \widetilde{g} mass $(m(\chi_1^0) < 50 \text{ GeV})$	
	<u> <u> </u></u>	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-058]	820 GeV \widetilde{g} mass $(m(\chi_1^0) = 60 \text{ GeV})$	
5	$b\underline{b}, b_1 \rightarrow b\overline{\chi}_1^{\circ}$: 0 lep + 2-b-jets + $E_{T,miss}$	L=2.1 fb ⁻¹ , 7 TeV [1112.3832]	390 GeV b mass $(m(\bar{\chi}_1^0) < 60 \text{ GeV})$	
ctio	tt (very light), t $\rightarrow b\tilde{\chi}_1^x$: 2 lep + $E_{\gamma,\text{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-059] 135 Ge	$t mass (m(\overline{\chi}_1) = 45 \text{ GeV})$	
- G	tt (light), t $\rightarrow b \tilde{\chi}_{1}^{x}$: 1/2 lep + b-jet + $E_{\gamma,\text{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-070] 120-17	3 GeV t mass $(m(\chi_1) = 45 \text{ GeV})$	
20	$\underline{t} t$ (heavy), $\underline{t} \rightarrow t \overline{\chi}_{\phi}^{\circ}$: 0 lep + b-jet + $E_{\tau, \text{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-074]	380-465 GeV t mass $(m(\chi_1) = 0)$	
st i	$\underbrace{\text{tt}}_{\text{t}}$ (heavy), $\underbrace{t} \rightarrow t \overline{\chi}_{\phi}^{*}$: 1 lep + b-jet + $E_{T,\text{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-073]	230-440 GeV t mass $(m(\tilde{\chi}_1) = 0)$	
dire	tt (heavy), t \rightarrow t $\tilde{\chi}_1$: 2 lep + b-jet + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-071]	298-305 GeV t mass $(m(\tilde{\chi}_1) = 0)$	
	tt (GMSB) : $Z(\rightarrow) + b$ -jet + $E_{T,miss}$	L=2.1 fb ⁻¹ , 7 TeV [1204.6736]	310 GeV t mass (115 < $m(\chi_1)$ < 230 GeV)	
sct.	$\lim_{t \to \infty} L_L, t \to \chi_0] : 2 \text{ lep } + E_{T, \text{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-076] 93-1	80 GeV mass $(m(\tilde{\chi_1}) = 0)$	
dire	$\tilde{\chi}_1 \tilde{\chi}_1, \tilde{\chi}_1 \rightarrow v(\bar{v}) \rightarrow v \tilde{\chi}_1 : 2 \text{ lep } + E_{T,\text{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-076]	120-330 GeV χ_1^- Mass $(m(\chi_1^-) = 0, m(l, \bar{v}) = \frac{1}{2}(m(\chi_1^-) + m(\chi_1^-)))$	
	$\overline{\chi_1 \chi_2} \rightarrow 3l(hv) + v + 2\overline{\chi_1}): 3 \text{ lep } + E_{T, \text{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-077]	60-500 GeV χ_1^- mass $(m(\overline{\chi}_1^c) = m(\overline{\chi}_2), m(\overline{\chi}_1) = 0, m(\overline{l}, \overline{v})$ as	above)
	AMSB : long-lived χ_1	L=4.7 fb", 7 TeV [CONF-2012-034]118 GeV	$\chi_1 \text{ mass}$ (1 < $\tau(\chi_1)$ < 2 ns, 90 GeV limit in [0.2,90] ns)	
es	Stable g R-hadrons : Full detector	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-075]	985 GeV g mass	
tic/	Stable b R-hadrons : Full detector	L=4.7 fb", 7 TeV [ATLAS-CONF-2012-075]	612 GeV D mass	
par	Stable t R-hadrons : Full detector	L=4.7 fb ', 7 TeV [ATLAS-CONF-2012-075]	683 Gev Tillass	
	Metastable g R-hadrons : Pixel det. only	L=4.7 fb , 7 TeV [ATLAS-CONF-2012-075]	910 GeV G ITIASS (t(g) > 10 hs)	
	GMSB : Stable t	L=4.7 fb , 7 TeV [ATLAS-CONF-2012-075]	122 TAL V MORE (1: -0.10.1	-0.05)
>	Bilinear RPV : 1 len + i's + F	L=1.1 fb , / lev [1109.3089]	1.32 IEV V_{τ} (Hass $(x_{311}^2 = 0.10, x_{312}^2)$	=0.05)
	BC1 RPV : 4 len + F_{-}	(=2.1 fb ⁻¹ 7 TeV [ATI AS-CONE-2012 025]	4.77 TeV (Cruse 15 mm)	
	Hypercolour scalar gluons : 4 jets $m_{-} \approx m_{-}$	(=34 pb ⁻¹ 7 TeV [1110 2693] 400.4	185 GeV SQLUOD MASS (not excluded; m., = 140 ± 3 GeV)	
	Spin dep. WIMP interaction : monoiet + F_{-}	L=47 fb ⁻¹ 7 TeV [ATLAS_CONE_2012_024]	709 GeV M^* SCale (m < 100 GeV under D5 D	litec x)
5 5	Spin indep. WIMP interaction : monoiet + F_{-}	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-084]	548 GeV M* SCale (m ₂ < 100 GeV tensor D9 Dirac	7)
	L. T.miss			
		10 ⁻¹	1	10

*Only a selection of the available mass limits on new states or phenomena shown

SUSY Today – Only Limits!

	ATLAS SUSY Searches* - 95% CL Lower Limits (Status: ICHEP 2012)
$MSUGRA/CMSSM: 0 lep + js + E_T$	miss L=4.7 fb ⁻⁷ , 7 TeV [ATLAS-CONF-2012-033] 1.40 TeV q = g mass
$\frac{8}{3}$	$\frac{L = 4.7 \text{ fb}^{-1} \text{ fev}^{-1} \text{ fev}$
$\frac{9}{2}$ MSUGRA/CMSSM : 0 lep + multijets + E_T	miss [L=4.7 fb 7 TeV [1206.1760] B40 GeV g ffl3SS (large m_0) J
Pheno model : 0 lep + $js + E_T$	miss [L=4.7 fb ⁻⁷ , 7 TeV [ATLAS-CONF-2012-033] 1.38 TeV q mass (m(g) < 2 TeV, light χ ₁) IS - 7 TeV
Pheno model : 0 lep + j s + E_T	miss L=4.7 fb 7 TeV [ATLAS-CONF-2012-033] 940 GeV g milds (m(q) < 2 TeV, light x,)
Gluino med. χ (g \rightarrow qq χ): 1 lep + j's + E_{T}	miss [2-4,7 tb', 7 TeV [ATLAS-CONF-2012-041] 900 GeV g (mass (m(x_1) < 200 GeV, m(x') = $\frac{1}{2}(m(x_1) + m(g))$ Proliminary
$3 \qquad GMSB: 2 lep USSF + E_T GMSB: 1_T + i'e + E$	miss L=1.0 fb ⁻ , 7 TeV [ATLAS-CONF-2011-156] 810 GeV g (mass (tanβ < 35) PTentiniary
$GMSB: 2-r+ile+E^{T}$	miss <u>L=2.1 tb'</u> , 7 TeV [1204.3852] 920 GeV g mass (tanβ > 20)
$GGM: wr + E^{T}$	miss [1=2,1 tb.', 7 TeV [1203.6580] 990 GeV g mass (tanβ > 20)
$g \rightarrow bb\chi_1$ (virtual b): 0 lep + 1/2 b-j's + E_T	miss [L=2,1 tb., 7 TeV [1203.6193] 900 GeV g mass (m(\chi) < 300 GeV)
$\underset{g \to bb \chi_{\tau}}{\cong} (virtual \underline{b}) : 0 \text{ lep } + 3 \text{ b-j's } + E_{\tau}$	miss L=4.7 fb ⁻ , 7 TeV [ATLAS-CONF-2012-058] 1.02 TeV g mass (m(z) < 400 GeV)
$g \rightarrow b b \chi$ (real b): 0 lep + 3 b-j's + E_T	miss L=4.7 fb ⁻ , 7 TeV [ATLAS-CONF-2012-058] 1.00 Te
$\tilde{g} \rightarrow tt \tilde{\chi}_{10}$ (virtual t) : 1 lep + 1/2 b-j's + E_T	$\frac{L=2.1 \text{ fb}^{-7} \text{ TeV} (1203.6193)}{1 \text{ To}} \frac{710 \text{ GeV}}{9} = \frac{1 \text{ To}}{1 \text{ To}} \frac{1}{10000000000000000000000000000000000$
$g \rightarrow tt \chi_{u}$ (virtual t): 2 lep (SS) + j's + E_T	<u></u>
$g \rightarrow tt \chi_1$ (virtual t): 0 lep + multi-j's + E_T	miss L=4.7 fb ⁻¹ , 7 TeV [1206.1760] 870 GeV
$\tilde{\mathfrak{G}} \rightarrow \tilde{\mathfrak{g}} \rightarrow tt \tilde{\chi}_{1} (virtual t) : 0 lep + 3 b-j's + E_{T}$	miss L=4.7 tb ⁻¹ , 7 TeV [ATLAS-CONF-2012-058] 940 GeV
$\tilde{g} \rightarrow t \tilde{\chi}_{1}$ (real t) : 0 lep + 3 b-j's + E_{T}	<u>L=4.7 tb⁻¹, 7 TeV [ATLAS-CONF-2012-058]</u> <u>2820 GeV</u> SQUAINS & GIUIIIOS
$\mathfrak{B}_{\mathfrak{S}} = \mathfrak{b}_{\mathfrak{S}}, \mathfrak{b}_{\mathfrak{I}} \to \mathfrak{b}_{\mathfrak{I}} \mathfrak{I} : 0 $ lep + 2-b-jets + $E_{\mathfrak{I}}$	miss L=2.1 fb ⁻¹ , 7 TeV [1112.3832] 390 GeV b mass (m
\mathbb{E} \mathbb{E} \mathbb{E} tt (very light), t \rightarrow b $\tilde{\chi}_1^+$: 2 lep + E_T	$\frac{L=4.7 \text{ tb}^3, 7 \text{ TeV [CONF-2012-059]}}{135 \text{ GeV}} \text{ tmass } (m(\vec{x}_1) = 45 \text{ GeV}) $
$\vec{z}_{\tau} = \vec{z}_{\tau}$ tt_{τ} (light), $t \rightarrow \vec{b} \tilde{\chi}_{\tau}^{+}$: 1/2 lep + b-jet + E_{τ}	$\frac{L=4.7 \text{ fb}^3, 7 \text{ TeV [CONF-2012-070]}}{120-173 \text{ GeV}} \text{ tmass } (m(\overline{x}_1) = 45 \text{ GeV}) \text{ SUUTY INCLASS}$
$\tilde{z} \ge \tilde{t}$ (heavy), $\tilde{t} \rightarrow t \tilde{\chi}_{a}^{*}$: 0 lep + b-jet + E_{T}	miss L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-074] 380-465 GeV t mass
$\Re_{\tau} = \underbrace{\text{tt}}_{\tau} (\text{heavy}), \underbrace{t}_{\tau} \to t \widetilde{\chi}_{\pi} : 1 \text{ lep + b-jet + } E_{\tau}$	miss L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-073] 230-440 GeV t mass (to) = 0)
$\mathbb{R} \stackrel{\text{g}}{=} $ tt (heavy), t \rightarrow t $\tilde{\chi}_{1}^{*}$: 2 lep + b-jet + E_{γ}	miss $L=4.7 \text{ fb}^4, 7 \text{ TeV} [\text{CONF-2012-071}]$ 298-305 GeV $t \mod (\pi (\tilde{\chi})) =$
tt (GMSB) $: Z(\rightarrow II) + b - jet + E_T$	<u>L=2.1 fb⁻¹, 7 TeV [1204.6736]</u> 310 GeV t mass (115 < r < 230 GeV)
~ 5 \downarrow_{L}	miss $L=4.7 \text{ fb}^4, 7 \text{ TeV}$ [CONF-2012-076] 93-180 GeV MASS $(m(\tilde{\chi}_1^2)=0)$
$\widetilde{\mathbb{Q}} = \widetilde{\chi}, \widetilde{\chi}, \widetilde{\chi}, \rightarrow \operatorname{lv}(\operatorname{Iv}) \rightarrow \operatorname{lv}\widetilde{\chi}, \widetilde{\chi} : 2 \operatorname{lep} + E_{\tau}$	$ \begin{array}{c} \underset{m \neq s}{\text{mass}} & \textbf{L=4.7 fb}^4, \textbf{7 TeV} \left[\textbf{CONF-2012-076} \right] & \textbf{120-330 GeV} & \overline{\chi}_s^+ \textbf{mass} & (m(0,m(\overline{v})=\frac{1}{2}(m(\overline{\chi}_s^+)+m(\overline{\chi}_s^-)))) \end{array} $
$\tilde{\chi}_{\tau}^{\pm}\tilde{\chi}_{\tau}^{\circ} \rightarrow 3l(lvv)+v+2\tilde{\chi}_{\tau}^{\circ}): 3 lep + E_{T}$	$ \begin{array}{c} L=4.7 \ \text{fb}^4, 7 \ \text{TeV} \ [\text{CONF-2012-} \underline{077}] \\ \end{array} \begin{array}{c} 60-500 \ \text{GeV} \\ \hline \chi_{\pm}^* \ \text{mas} \\ mas \\ (m(\chi_{\pm}^+) = m(\chi_{\pm}^0), m(\chi_{\pm}^0) = 0, m(\overline{1,v}) \ \text{as above}) \end{array} $
AMSB : long-live	$\int \overline{\chi}_{+}^{\infty} L^{-4.7 \text{ tb}^{-1}, 7 \text{ TeV}} [\text{CONF-2012-034}] 118 \text{ GeV} \overline{\chi}_{+}^{\infty} \text{ MASS} (1 < \tau(\overline{\chi}_{+}^{5}) < 2 \text{ ns}, 90 \text{ GeV} \text{ nn} [0.2,90] \text{ ns})$
Stable 🖗 R-hadrons : Full deter	tor L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-075] 985 Ger Mass
🚔 💆 Stable b R-hadrons : Full deter	tor L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-075] 612 GeV b m
Stable t R-hadrons : Full deter	tor L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-075] 683 GeV t T
Metastable ğ R-hadrons : Pixel det. d	ארא (ג'ק ארא ארא ארא ארא ארא ארא ארא ארא ארא אר
GMSB : stab	e ₹ L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-075] 310 GeV ₹ MASS (5 < ta = 0)
RPV : high-mass	• $\Theta\mu$ L=1.1 fb ⁻¹ , 7 TeV [1109.3089] 1 V \bar{V}_{τ} mass ($\lambda_{311}^{-}=0.10, \lambda_{312}^{-}=0.05$)
Bilinear RPV : 1 lep + j's + E_{γ}	miss L=1.0 fb ⁻¹ , 7 TeV [1109.6606] 760 GeV C MASS (ct _{LSP} < 15 mm)
BC1 RPV : 4 lep + Ε _τ	
Hypercolour scalar gluons : 4 jets, m _{ii} ≈	m _{kl} L=34 pb ⁻¹ , 7 TeV [1110.2693] 100-185 GeV Sgluon mass (not exclut D _{sg} = 140± 3 GeV)
Spin dep. WIMP interaction : monojet + É ₁	miss L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-084] 709 GeV M ale (m _χ < 100 GeV, vector D5, Dirac χ)
Spin indep. WIMP interaction : monojet + E ₁	.miss. L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-084] 548 GeV M [*] So (m _χ < 100 GeV, tensor D9, Dirac χ)
	10 ⁻¹ 1 10

"SUS`

SUSY Today – Only Limits!

irks Inclusive searches ted	$\begin{array}{c} \text{MSUGRA/CMSSM}: 0 \ \text{lep} + j'\text{s} + E_{\tau,\text{miss}} \\ \text{MSUGRA/CMSSM}: 1 \ \text{lep} + j'\text{s} + E_{\tau,\text{miss}} \\ \text{MSUGRA/CMSSM}: 0 \ \text{lep} + \text{multijets} + E_{\tau,\text{miss}} \\ \text{Pheno model}: 0 \ \text{lep} + j'\text{s} + E_{\tau,\text{miss}} \\ \text{Pheno model}: 0 \ \text{lep} + j'\text{s} + E_{\tau,\text{miss}} \\ \text{Gluino med}. \ \vec{\chi}^{\pm} \left(\vec{\mathfrak{g}} \rightarrow \mathbf{q} \vec{\mathfrak{q}} \vec{\chi}^{\pm} \right) : 1 \ \text{lep} + j'\text{s} + E_{\tau,\text{miss}} \\ \text{GMSB}: 2 \ \text{lep} \ \text{OSSF} + E_{\tau,\text{miss}} \\ \text{GMSB}: 1 - \tau + j'\text{s} + E_{\tau,\text{miss}} \\ \text{GMSB}: 2 -$	ATLAS SUSY Searches	* - 95% CL Lower Limits (S 1.40 TeV $\tilde{q} = \tilde{g}$ mass 1.20 TeV $\tilde{q} = \tilde{g}$ mass 1.20 TeV $\tilde{q} = \tilde{g}$ mass 840 GeV \tilde{g} mass (large m _o) 1.38 TeV \tilde{q} mass (m($\tilde{q}) < 2\pi$ 940 GeV \tilde{g} mass (m($\tilde{q}) < 2\pi$ 900 GeV \tilde{g} mass (m($\tilde{q}) < 2\pi$ 900 GeV \tilde{g} mass (m($\tilde{q}) < 2\pi$ 810 GeV \tilde{g} mass (m($\tilde{q}) < 2\pi$) 920 GeV \tilde{g} mass (tan $\beta < 35$) 920 GeV \tilde{g} mass (tan $\beta < 2\pi$) 990 GeV \tilde{g} mass (tan $\beta > 2\pi$) 1.07 TeV \tilde{g} mass (m($\tilde{q}_{\gamma}) < 3\pi$) 1.02 TeV \tilde{g} mass (m($\tilde{q}_{\gamma}) < 3\pi$)	Status: ICHEP 2012) $\int Ldt = (0.03 - 4.8) \text{ fb}^{-1}$ $(\tilde{g}) < 2 \text{ TeV, light } \tilde{\chi}_{1}^{0}) \qquad \text{fs} = 7 \text{ TeV}$ $eV, \text{ light } \tilde{\chi}_{1}^{0}) \qquad \text{fs} = 7 \text{ TeV}$ $eV, \text{ light } \tilde{\chi}_{1}^{0}) \qquad \text{ATLAS}$ $Preliminary$ $D)$ (50 GeV) $D \text{ GeV}$ $400 \text{ GeV})$
3rd gen. squarks 3rd gen. squa Sirect production gluino mediat	$ \begin{split} \widetilde{g} \rightarrow b \widetilde{b} \widetilde{\chi}_{1}^{\circ} (\text{real b}) &: 0 \text{ lep } + 3 \text{ b-j's } + E_{T, \text{miss}} \\ \widetilde{g} \rightarrow t \widetilde{t} \chi_{10}^{\circ} (\text{virtual t}) &: 1 \text{ lep } + 1/2 \text{ b-j's } + E_{T, \text{miss}} \\ \widetilde{g} \rightarrow t \widetilde{t} \chi_{10}^{\circ} (\text{virtual t}) &: 2 \text{ lep } (SS) + j's + E_{T, \text{miss}} \\ \widetilde{g} \rightarrow t \widetilde{t} \chi_{11}^{\circ} (\text{virtual t}) &: 0 \text{ lep } + \text{ multi-j's } + E_{T, \text{miss}} \\ \widetilde{g} \rightarrow t \widetilde{t} \chi_{11}^{\circ} (\text{virtual t}) &: 0 \text{ lep } + 3 \text{ b-j's } + E_{T, \text{miss}} \\ \widetilde{g} \rightarrow t \widetilde{t} \chi_{11}^{\circ} (\text{virtual t}) &: 0 \text{ lep } + 3 \text{ b-j's } + E_{T, \text{miss}} \\ \widetilde{g} \rightarrow t \widetilde{t} \chi_{11}^{\circ} (\text{real t}) &: 0 \text{ lep } + 3 \text{ b-j's } + E_{T, \text{miss}} \\ \widetilde{g} \rightarrow t \widetilde{t} \chi_{11}^{\circ} (\text{real t}) &: 0 \text{ lep } + 3 \text{ b-j's } + E_{T, \text{miss}} \\ \text{bb, } b_{1} \rightarrow b \widetilde{\chi}_{1}^{\circ} &: 0 \text{ lep } + 2 \text{ b-jets } + E_{T, \text{miss}} \\ \text{tf (very light), } \widetilde{t} \rightarrow b \widetilde{\chi}_{1}^{\circ} &: 0 \text{ lep } + 2 \text{ b-jet } + E_{T, \text{miss}} \\ \text{tf (light), } \widetilde{t} \rightarrow b \widetilde{\chi}_{1}^{\circ} &: 0 \text{ lep } + 2 \text{ b-jet } + E_{T, \text{miss}} \\ \text{tf (leavy), } \widetilde{t} \rightarrow b \widetilde{\chi}_{1}^{\circ} &: 0 \text{ lep } + 2 \text{ b-jet } + E_{T, \text{miss}} \\ \text{tf (leavy), } \widetilde{t} \rightarrow b \widetilde{\chi}_{1}^{\circ} &: 0 \text{ lep } + 2 \text{ b-jet } + E_{T, \text{miss}} \\ \text{tf (leavy), } \widetilde{t} \rightarrow b \widetilde{\chi}_{1}^{\circ} &: 0 \text{ lep } + 2 \text{ b-jet } + E_{T, \text{miss}} \\ \text{tf (leavy), } \widetilde{t} \rightarrow t \widetilde{\chi}_{0}^{\circ} &: 0 \text{ lep } + 2 \text{ b-jet } + E_{T, \text{miss}} \\ \text{tf (heavy), } \widetilde{t} \rightarrow \widetilde{t} \widetilde{\chi}_{0}^{\circ} &: 1 \text{ lep } + 2 \text{ b-jet } + E_{T, \text{miss}} \\ \text{tf (heavy), } \widetilde{t} \rightarrow \widetilde{t} \widetilde{\chi}_{0}^{\circ} &: 1 \text{ lep } + 2 \text{ b-jet } + E_{T, \text{miss}} \\ \text{tf (heavy), } \widetilde{t} \rightarrow \widetilde{t} \widetilde{\chi}_{1}^{\circ} &: 2 \text{ lep } + 2 \text{ b-jet } + E_{T, \text{miss}} \\ \text{tf (heavy), } \widetilde{t} \rightarrow \widetilde{t} \widetilde{\chi}_{1}^{\circ} &: 2 \text{ lep } + 2 \text{ b-jet } + E_{T, \text{miss}} \\ \text{tf (heavy), } \widetilde{t} \rightarrow \widetilde{t} \widetilde{\chi}_{1}^{\circ} &: 2 \text{ lep } + 2 \text{ b-jet } + E_{T, \text{miss}} \\ \text{tf (heavy), } \widetilde{t} \rightarrow \widetilde{t} \widetilde{\chi}_{1}^{\circ} &: 2 \text{ lep } + 2 \text{ b-jet } + E_{T, \text{miss}} \end{array}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-058] L=2.1 fb ⁻¹ , 7 TeV [1203.6193] L=2.1 fb ⁻¹ , 7 TeV [1203.5763] L=4.7 fb ⁻¹ , 7 TeV [1206.1760] L=4.7 fb ⁻¹ , 7 TeV [1206.1760] L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-058] L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-059] 135 GeV L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-070] 120-173 GeV L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-074] 380 L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-073] 230- L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-073] 230- L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-073] 298-305 Ge ¹	1.00 Te 710 GeV \tilde{g} 650 GeV \tilde{g} m 870 GeV \tilde{g} m 940 GeV \tilde{g} $(m(\tilde{\chi}_1^0) = 45 GeV)$ \tilde{g} $(strtc)$ \tilde{g} 945 GeV \tilde{t} mass 440 GeV \tilde{t} mass $(m(\tilde{\chi}_1^0) = 45 GeV)$ $= 0$	TeV limits on arks & gluinos ong interaction)
Long-lived EW 3 particles direct 0	tt (GMSB) : $Z(\rightarrow II)$ + b-jet + $\tilde{[l_1, \tilde{l_1}]} = \tilde{I_2}$: 2 lep + $\tilde{\chi}_1^* \tilde{\chi}_1, \tilde{\chi}_1^* \rightarrow \tilde{Iv}(\bar{Iv}) \rightarrow Iv\tilde{\chi}_1^*$: 2 lep + $\tilde{\chi}_1^* \tilde{\chi}_2 \rightarrow 3I(Ivv) + v + 2\tilde{\chi}_1^*)$: 3 lep + AMSB : long-liv Stable \tilde{g} R-hadrons : Full de Stable \tilde{b} R-hadrons : Full detector Metastable \tilde{g} R-hadrons : Full detector Metastable \tilde{g} R-hadrons : Pixel det. only GMSB : stable $\bar{\tau}$	00 to 400 GeV imits on stops L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-075] L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-075]	$\begin{array}{c} \mbox{mass} & (115 < n & < 230 \mbox{ GeV}) \\ m(\overline{\chi}_{1}^{0}) = 0) \\ \overline{\chi}_{1}^{+} \mbox{mass} & (m(\ 0, m(\widetilde{l}, \overline{v}) = \frac{1}{2}(m(\overline{\chi}_{1}^{+}) + \\ \mbox{GeV} & \overline{\chi}_{1}^{+} \mbox{mass} & (m(\overline{\chi}_{1}^{+}) = m(\overline{\chi}_{2}^{0}), m(\overline{\chi}_{1}^{0}) \\ \hline \mbox{GeV} & \overline{\chi}_{1}^{+} \mbox{GeV} & n \ [0.2,90] \ ns \) \\ \hline \mbox{985 Ge} & j \ mass \\ \mbox{612 GeV} & \widetilde{b} \ m, \\ \mbox{683 GeV} & \widetilde{t} \ m \\ \hline \mbox{910 GeV} & mass \ (\tau(\widetilde{g}) > 10 \ n \\ \hline \mbox{Mass} & (5 < ta \ 20) \\ \end{array}$	$m(\overline{\chi}_{1}^{0})))$) = 0, $m(\widetilde{l}, \overline{v})$ as above) s)
Other RPV	RPV : high-mass eµ Bilinear RPV : 1 lep + j's + $E_{T,miss}$ BC1 RPV : 4 lep + $E_{T,miss}$ Hypercolour scalar gluons : 4 jets, $m_{ij} \approx m_{kl}$ Spin dep. WIMP interaction : monojet + $E_{T,miss}$ Spin indep. WIMP interaction : monojet + $E_{T,miss}$	L=1.1 fb", 7 TeV [1109.3089] L=1.0 fb ⁻¹ , 7 TeV [1109.6606] L=2.1 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-035] L=34 pb ⁻¹ , 7 TeV [1110.2693] 100-185 GeV SGIU(L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-084] L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-084] L=1.1 L L L L L L L L L L L L L L L L L L	1. $V v_{\tau} mass$ (760 GeV \tilde{c} mass ($c\tau_{LSP} < 1$ 77 TeV \tilde{g} mass 01 ass (not excluse $n_{sg} = 140 \pm 3$ GeV) 709 GeV M ale ($m_{\chi} < 100$ GeV, ter 1	¹ ₃₁₁ =0.10, λ ₃₁₂ =0.05) 5 mm) 5 (, vector D5, Dirac χ) 1

Search for Physics Beyond the SM

PROCEEDINGS OF THE WORKSHOP ON PHYSICS AT FUTURE ACCELERATORS

La Thuile 7-13 January 1987: Still assumed $\sqrt{s} = 17 \text{ TeV}$!

		CERN 87 Vol. 1 4 June 19
	OPÉENNE POUR LA REC	HERCHE NUCLÉAIRE
CERIN EUROPEAN	ORGANIZATION FOR	NUCLEAR RESEARCH
PROCEEDINGS O	FTHE	
PHYSICS AT FUT	URE ACCELERAT	ORS
La Thuile (Italy) and Gene 7 – 13 January 1987	va (Switzerland)	
Vol. I		
	GENEVA	
	1987	

Search for Physics Beyond the SM

La Thuile 7-13 January 1987: Still assumed √s = 17 TeV PROCEEDINGS OF THE WORKSHOP ON PHYSICS AT FUTURE ACCELERATORS

Supersymmetry

The main conclusions of this analysis are as follows:

- 1) The Tevatron will be able to reach $m_{\tilde{q}}, m_{\tilde{g}} \approx 100 \text{ GeV}$ when it achieves $\int Ldt = 10^{36} \text{ cm}^{-2} \text{ s}^{-1}$, and $m_{\tilde{q}} \approx 350 \text{ GeV}, m_{\tilde{g}} \approx 200 \text{ GeV}$ if it achieves $\int Ldt = 10^{39} \text{ cm}^{-2} \text{ s}^{-1}$.
- 2) The LHC overlaps with the Tevatron for squarks and gluinos with masses between 200 and 400 GeV.
- 3) The rate at the LHC with 10 fb⁻¹ varies from about 2×10^7 events for $m_{\tilde{q}} \approx m_{\tilde{g}} \approx 300$ GeV, compared with about 3×10^8 QCD background events, to about 2×10^4 events for $m_{\tilde{q}} \approx m_{\tilde{g}} \approx 1$ TeV, compared with about 2×10^7 QCD background events. After applying the proposed cuts, the signal-to-background ratio falls from 50 to 90 in the low-mass case, through about 10 to 20 when $m_{\tilde{q}} \approx m_{\tilde{g}} \approx 500$ GeV, to about 1 when $m_{\tilde{q}} \approx m_{\tilde{g}} \approx$

1 TeV. A bound of about 1 TeV seems to be attainable at the LHC with effort.

4) The SSC could reach out to sparticle masses ≈ 1.5 TeV.

CERN 87-07 Vol. I 4 June 1987

organisation européenne pour la recherche nucléaire CERN european organization for nuclear research

PROCEEDINGS OF THE VORKSHOP ON PHYSICS AT FUTURE ACCELERATORS

La Thuile (Italy) and Geneva (Switzerland)

Searches for SUSY

"SUSY post-Higgs discovery" O. Buchmüller

Searches for SUSY

"SUSY post-Higgs discovery" O. Buchmüller

Imperial College London

Putting it all Together – Where are Toady?

Higgs: SUSY vs. SM

Example: "redo" SM fit in SUSY predicting the lightest higgs boson mass in the Constraint Minimal Supersymmeteric Standard Model (CMSSM)

"SUSY post-Higgs discovery" O. Buchmüller

SY vs. SIvi ^{••••} [>]007 MasterCode Collaboration

OB (Exp), R. Cavanaugh (Exp), A. De Roeck (Exp), J. Ellis (Theo), H. Flaecher (Exp), S. Heinemeyer (Theo), G. Isidori (Theo), K. Olive (Theo), P. Paradisi, (Theo), F. Ronga (Exp), G. Weiglein (Theo)

Pu	\mathbf{O}^{meas} - \mathbf{O}^{fit} / σ^{meas}		
Variable	Measurement	Fit	0 1 2
$\Delta \alpha_{had}^{(5)}(\mathbf{m}_z)$	0.02758 ± 0.00035	0.02774	
m _z [GeV]	91.1875 ± 0.0021	91.1873	
$\Gamma_{\rm Z}$ [GeV]	$\textbf{2.4952} \pm \textbf{0.0023}$	2.4952	
σ_{had}^0 [nb]	41.540 ± 0.037	41.486	
R ₁	$\textbf{20.767} \pm \textbf{0.025}$	20.744	
A ^{0,1}	0.01714 ± 0.00095	0.01641	
$\mathbf{A}_{\mathbf{I}}(\mathbf{P}_{\tau})$	0.1465 ± 0.0032	0.1479	
R _b	0.21629 ± 0.00066	0.21613	
R _c	0.1721 ± 0.0030	0.1722	
$A_{fb}^{0,b}$	0.0992 ± 0.0016	0.1037	
A ^{0,c}	0.0707 ± 0.0035	0.0741	
$\mathbf{A}_{\mathbf{b}}$	$\textbf{0.923} \pm \textbf{0.020}$	0.935	
A _c	$\boldsymbol{0.670 \pm 0.027}$	0.668	
A _l (SLD)	$\textbf{0.1513} \pm \textbf{0.0021}$	0.1479	
$\sin^2 \theta_{\rm eff}^{\rm lept}(\mathbf{Q}_{\rm fb})$	$\boldsymbol{0.2324 \pm 0.0012}$	0.2314	
m _w [GeV]	$\textbf{80.398} \pm \textbf{0.025}$	80.382	
m _t [GeV]	170.9 ± 1.8	170.8	
R(b→sγ)	1.13 ± 0.12	1.12	
B _s →μμ [×10 ⁻⁸]	< 8.00	0.33	N/A (upper limit)
Δa _μ [×10 ⁻⁹]	$\textbf{2.95} \pm \textbf{0.87}$	2.95	
Ωh^2	0.113 ± 0.009	0.113	

The pre-LHC era

Model	Min χ^2	Prob	$m_{1/2}$	m_0	A_0	$\tan\beta$
CMSSM	21.5	37%	360	90	400	15
NUHM1	20.8	29%	340	110	-520	13

For references NDF ~ 22

The "post-LHC" era in 2011

- Chi² increases
 - > Shifting to higher masses, larger tan β
 - > Plane relatively flat no real preferred minima anymore

SUSY: Light Higgs Predictions

- Higgs important probe of SUSY
 - Predictions above produced based on analogous method to SM best-fit plots
 - → No Higgs constraints imposed to make these plots!!

The "post-Higgs" era

- Assume a putative measurement of m_H=125 +/- 1.5(theo) +/- 1.0 GeV
 - > Further reduction in potential phase-space!

Post "LHC&Higgs" era in 2012

- Updated with
 - > 5/fb direct search results
 - > Updated BR(Bs-> $\mu \mu$) combination from the LHC (May 2012
- Prospects look bleak for constrained models
 - > p-value ~10% (max)

CMSSM: Evolution with time

SUSY on life support?

The answer to this question is NO!

See 2012 Experimental SUSY PDG review [OB & Paul De Jong]: http://pdg.lbl.gov/2012/reviews/rpp2012-rev-susy-2-experiment.pdf

Model	Assumption	$m_{ ilde{q}}$	$m_{ ilde{g}}$
	$m_{ ilde{q}}pprox m_{ ilde{g}}$	1400	1400
CMSSM	all $m_{ ilde{q}}$	-	800
	all $m_{ ilde{g}}$	1300	-
Simplified model $\tilde{g}\tilde{g}$	$m_{ ilde{\chi}_1^0}=0$	-	900
	$m_{ ilde{\chi}_1^0} > 300$	-	no limit
Simplified model $\tilde{q}\tilde{q}$	$m_{ ilde{\chi}^0_1}=0$	750	-
	$m_{ ilde{\chi}_{1}^{0}} > 250$	no limit	-
Simplified model	$m_{ ilde{\chi}_1^0} = 0, m_{ ilde{q}} pprox m_{ ilde{g}}$	1500	1500
$ ilde{g} ilde{q}, ilde{g} ar{ ilde{q}}$	$m_{\tilde{\chi}_1^0} = 0$, all $m_{\tilde{g}}$	1400	-
	$m_{ ilde{\chi}_1^0}^{\sim_1}=0, ext{ all } m_{ ilde{q}}$	-	900

SUSY on life support?

The answer to this question is NO!

See 2012 Experimental SUSY PDG review [OB & Paul De Jong]: http://pdg.lbl.gov/2012/reviews/rpp2012-rev-susy-2-experiment.pdf

Model	Assumption	$m_{ ilde q}$	$m_{ ilde{g}}$	-
	$m_{ ilde{q}}pprox m_{ ilde{g}}$	1400	1400	In general, the LHC
CMSSM	all $m_{ ilde{q}}$	-	800	does not (yet) place
	all $m_{ ilde{g}}$	1300	-	limits on parameter
Simplified model $\tilde{g}\tilde{g}$	$m_{ ilde{\chi}^0_1}=0$	-	900	space with
	$m_{\tilde{\chi}_1^0} > 300$	- (no limit	<i>M_{LSP}</i> >~400 GeV
Simplified model $\tilde{q}\tilde{q}$	$m_{ ilde{ u}^0}=0$	750	-	Leaving a very large
	$m_{\tilde{\chi}_1^0} > 250$	no limit		Region of the MSSM,
Simplified model	$m_{\tilde{\chi}^0_1} = 0, m_{\tilde{q}} \approx m_{\tilde{g}}$	1500	1500	even at the mass
$ ilde{g} ilde{q}, ilde{g}ar{ ilde{q}}$	$\widehat{m}_{ ilde{\chi}_1^0} = 0$, all $m_{ ilde{g}}$	1400	-	scale below 1 TeV,
	$m_{ ilde{\chi}_1^0}^{\sim_1}=0, ext{ all } m_{ ilde{q}}$	-	900	unexplored!

SUSY Coverage

SUSY Coverage

Compatibility with the SM Higgs Boson

Compatibility with the SM Higgs Boson

Evidences for a higher h to yy branching fraction then expected in the SM?

(light) Higgs in MSSM

Plenty of MSSM parameter space could accommodate BR(h->γγ)>BR(SM) leaving still a lot of options for a SUSY and a heavy Higgs sector to exist.

We have finally opened the window!

"SUSY post-Higgs discovery" O. Buchmüller

Imperial College Tejinder S. Virdee, Imperial®College

We have finally opened the window!

"SUSY post-Higgs discovery" O. Buchmüller

Imperial College Tejinder S. Virdee, Imperial®College

Another Way to Look at It ...

Many people now ask:

Will the LHC discover the Higgs boson?

My answer is ...

Another Way to Look at It ...

Many people now ask:

Will the LHC discover the Higgs boson?

My answer is ...

By the time the LHC discovers the Higgs boson, that discovery will no longer be considered interesting.

M.E. Peskin - Tools 2008

CMS Performance: Tracking and Muons

Higgs

Search in the ZZ → 4I channel

Search for a narrow peak in the 4I mass spectrum over a low background, clean signature but expect few events

Background: irreducible ZZ^(*); reducible Z+jets, ttbar, WZ

Irreducible background $ZZ \rightarrow 4I$

Estimated using simulation

Reducible backgrounds estimated from data

Search for the SM Higgs Boson

The relevant decay modes depend strongly on m_H analysed 5 decay modes $\gamma\gamma$, ZZ, WW, bb, $\tau\tau$

Production modes

In the low mass range the $\gamma\gamma$, ZZ \rightarrow 4l modes play a special role due excellent two-photon and 4l mass resolution (~1% compared with >10% for the others)

Properties of the New Boson: Couplings

	$gg \rightarrow H$	VBF	VH	ttH
$H \rightarrow \gamma \gamma$	$c_F^2 \cdot \alpha c_V + \beta c_F ^2$	$c_V^2 \cdot \alpha c_V + \beta c_F ^2$	$(c_V^2 \cdot \alpha c_V + \beta c_F ^2)$	$(c_{F}^{2} \cdot \alpha c_{V} + \beta c_{F} ^{2})$
$H \rightarrow bb$	$(c_F^2 c_F^2)$	$(c_V^2 \cdot c_F^2)$	$c_V^2 \cdot c_F^2$	$c_F^2 \cdot c_F^2$
$H \rightarrow \tau \tau$	$c_F^2 \cdot c_F^2$	$c_V^2 \cdot c_F^2$	$c_V^2 \cdot c_F^2$	$(c_F^2 \cdot c_F^2)$
$H \rightarrow WW$	$c_F^2 \cdot c_V^2$	$c_V^2 \cdot c_V^2$	$c_V^2 \cdot c_V^2$	$(c_F^2 \cdot c_V^2)$
$H \rightarrow ZZ$	$c_F^2 \cdot c_V^2$	$(c_V^2 \cdot c_V^2)$	$\begin{pmatrix} c_V^2 \cdot c_V^2 \end{pmatrix}$	$\begin{pmatrix} c_F^2 \cdot c_V^2 \end{pmatrix}$

Group the Higgs couplings into "Vectorial" and "Fermionic" sets. Attach a modifier to the SM prediction to each of those (C_V and C_F). In agreement with the SM within the 95% confidence range \rightarrow Need more data! പ് 2.0 20 CMS Preliminary 1.8 18 $v_{s} = 7 \text{ TeV}, L = 5.1 \text{ fb}^{-1}$ $\sqrt{s} = 8 \text{ TeV}, L = 5.3 \text{ fb}^{-1}$ 1.6 16 N 14 1.4 1.2 12 1.0 10 0.8 8 0.6 6 0.4 4 0.2 2 0.8.0 0 1.5 0.5 1.0 solid contour: 68% CL c_v dashed contour: 95% CL Imperial College 89

London

The Analysis Method for $H \rightarrow \gamma \gamma$

- Main analysis is a Multi-Variate-Analysis (MVA)
 - MVAs for photon identification and event classification
 - Fit mass distribution in 4 event classes based on a diphoton MVA output + 2 di-jet categories
 - 2. Cross-checked with an alternative background model extraction using mass sidebands to construct the background model
 - 3. Also cross-checked with a cut based analysis
 - Simple and robust Fit data mass distribution in 2 angular x 2 shower shape i.e. 4 categories with different signal over background + 2 dijet categories

SUSY

Pre-LHC 2008

Post-LHC (1/fb), Post-Xenon100 - 2011

Today CMSSM NUHM1 10⁻⁴⁰ 10⁻⁴⁰ 45.0 42.5 10⁻⁴¹ 10⁻⁴¹ 40.0 10⁻⁴² 10⁻⁴² 37.5 10⁻⁴³ 10⁻⁴³ 35.0 $\sigma_p^{SI}[cm^{-2}]$ $\sigma_p^{SI}[cm^{-2}]$ 10⁻⁴⁴ 32.5 10⁻⁴⁴ 30.0 10⁻⁴⁵ 10⁻⁴⁵ 27.5 10^{-46} 10^{-46} 25.0 10⁻⁴⁷ 10⁻⁴⁷ 22.5 10^{-48} 10⁻⁴⁸ 20.0 10² 10² 10^{3} 10^{3}

 $m_{ ilde{\chi}_1^0}[GeV\!/c^2]$

 $m_{\tilde{\chi}_1^0}[GeV/c^2]$

45.0

42.5

40.0

37.5

35.0

32.5

30.0

27.5

25.0

22.5

20.0

CMSSM: Evolution with time

SUSY & Dark Matter - Synergies in the Future!

SUSY & Dark Matter - Synergies in the Future!

SUSY & Dark Matter - Synergies in the Future!

Imperial College

B_s -> μμ

Also B-Physics provides powerful constraints on SUSY. Example: B_s -> μμ

For comparison: SM: ~3x10⁻⁹

BR(B _s -> μμ) [10 ⁻⁹]	90% CL	95% CL
ATLAS	xx	22
CMS	XX	7.7
LHCb	хх	4.5
CDF	ХХ	ХХ
D0		
Combined*	XX	XX

*) Private average performed for MasterCode studies

Direct Dark Matter Searches

Example: Xenon100 New result: arXiv:1207.5988v1

The XENON100 experiment is located deep underground at the Gran Sasso National Laboratory in Italy.

34 kg liquid Xenon target 225 days of data taking

1.0±0.2 events expected 2 events observed ⇒Exclude 2.0 × 10^{-45} cm² for a M_{WIMP} = 55 GeV at 90% CL.

Why Global Fits?!

Imperial College London

Why Global Fits?!

Example: Wmap strips in the CMSSM Global Fit instead of 2D scan:

Carry out a simultaneous fit of all relevant NP and SM parameter to the experimental data/constraints.

The result of such a global fit wil not suffer from the "ambiguity symptoms" of the scans and in addition will provide a well-defined statistical interpretation of the results

Its proper execution is by far a non-trivial problem, though!

"SUSY post-Higgs discovery" O. Buchmüller

Imperial College 103 London