Neutrino Mass from d>5 Effective Operators in an SU(5) GUT with Discrete Symmetry

in collaboration with Davide Meloni, Walter Winter and Werner Porod

Martin B. Krauss

Universität Würzburg Institut für Theoretische Physik und Astrophysik

December 4, 2012

Many new physics models come with an **extented Higgs sector** and additional **(discrete) symmetries**.

- Systematic study of neutrino mass generation by higher-dimensional effective operators
- New physics at the TeV scale and phenomenological implications at the LHC
- Embedding in SU(5) GUT and consequences for phenomenology

• The usual type I seesaw introduces new physics close to the GUT scale.

- At low energies the new physics effects can be described by the Weinberg operator O_W = (*L̄*^ciτ²*H*)(*H*iτ²*L*) of *d* = 5.
- After EWSB $\frac{Y_N^2}{m_N} \langle H \rangle^2 \bar{\nu}^c \nu \rightarrow$ generates neutrino mass $m_{\nu}^{\text{eff}} \propto \frac{v^2}{\Lambda}$, with $\Lambda = m_N$

Not testable in experiments!

... down to the TeV scale

In theories with additional scalars (THDM, MSSM, NMSSM, ...) \rightarrow Operators with d > 5 can have significant contribution to neutrino mass

- \blacksquare Theories with discrete symmetries ightarrow operator can be forbidden at d=5
- Operator with d > 5 as leading contribution to neutrino mass
- New physics scale can be at lower energy

Possible Effective Operators in the NMSSM

$$W_{\text{NMSSM}} = y_u u^c Q H_u + y_d d^c Q H d + y_e e^c L H_d + \lambda S H_u H_d + \frac{1}{3} \kappa S^3$$

	Op.#	Effective interaction	Charge	Same as
d = 5	1	LLH_uH_u	$2q_L + 2q_{H_u}$	
<i>d</i> = 6	2	LLH _u H _u S	$2q_L + q_{H_u} - q_{H_d}$	
d = 7	3	$LLH_uH_uH_dH_u$	$2q_L + 3q_{H_u} + q_{H_d}$	
	4	LLH _u H _u SS	$2q_L - 2q_{H_d}$	
<i>d</i> = 8	5	LLH _u H _u H _d H _u S	$2q_L + 2q_{H_{\mu}}$	#1
	6	LLH _u H _u SSS	$2q_L + 2q_{H_u}$	#1
d = 9	7	LLH _u H _u H _d H _d H _d H _d H _u	$2q_L + 4q_{H_{\mu}} + 2q_{H_{d}}$	
	8	LLH _u H _u H _d H _u SS	$2q_L + q_{H_u} - q_{H_d}$	#2
	9	LLH _u H _u SSSS	$2q_L + q_{H_u} - q_{H_d}$	#2

Characteristics

Julius-Maximilians

WÜRZBURG

- Condition for discrete charges of fields from neutrality of superpotential
- Rules out some operators as leading contribution to neutrino mass
- Several possible fundamental theories can lead to the same effective operator

MBK, Ota, Porod, Winter (2011); PRD 84, 115023

(c.f. Bonnet, Hernandez, Ota, Winter (2009); JHEP 0910, 076 for a study in the THDM) $\frac{4}{16}$

UNIVERSITÄT Possible Decompositions for d = 7

- Same external fields, different mediators
- Scalar mediators potentially problematic: VEV of scalar → induces d = 6 operator

Superpotential

$$W = W_{\text{(N)MSSM}} + Y_N \hat{N} \hat{L} \cdot \hat{H}_u - \kappa_1 \hat{N}' \hat{\xi} \cdot \hat{H}_d + \kappa_2 \hat{N}' \hat{\xi}' \cdot \hat{H}_u + m_N \hat{N} \hat{N}' + m_\xi \hat{\xi} \cdot \hat{\xi}'$$

New fields:

- SM singlets N, N'
- $SU(2)_L$ doublets ξ , ξ'

• In the basis $f^0 = (\nu, N, N', \xi^0, {\xi'}^0)$ we obtain the mass matrix

Mass Matrix

$$M_{f}^{0} = \begin{pmatrix} 0 & Y_{N}v_{u} & 0 & 0 & 0 \\ Y_{N}v_{u} & 0 & m_{N} & 0 & 0 \\ 0 & m_{N} & 0 & \kappa_{1}v_{d} & \kappa_{2}v_{u} \\ 0 & 0 & \kappa_{1}v_{d} & 0 & m_{\xi} \\ 0 & 0 & \kappa_{2}v_{u} & m_{\xi} & 0 \end{pmatrix}$$

By integrating out the heavy fields we obtain an effective mass matrix for the three SM neutrinos at low energies

$$m_
u = v_u^3 v_d Y_N^2 rac{\kappa_1 \kappa_2}{m_\xi m_N^2}$$

Masses at TeV scale for couplings $O(10^{-3})$

Julius-Maximilians

UNIVERSITÄT WÜRZBURG LHC Phenomenology

Production of the new particles

- **•** Rare production of \hat{N} and \hat{N}' due to small Yukawa couplings
- SU(2)_L doublets can be produced in Drell-Yan processes ($\sigma \sim 10^2 \, {\rm fb}$)

Characteristic Signals

- Displaced vertices due to small mixing between heavy and light neutrinos
- Lepton number violating processes
 - □ LNC cross-section for $pp \rightarrow W\ell\ell$ of $\mathcal{O}(10^2)$ fb LNV processes suppressed due to pseudo-Dirac pairs (< $\mathcal{O}(10^{-9})$ fb)
 - □ For $pp \rightarrow W\ell W\ell$ LNV processes larger than naively expected ($O(10^{-2})$ fb)

MBK, Ota, Porod, Winter (2011); PRD 84, 115023

- Additional particles modify running of the gauge couplings
- Spoils unification
- Add complete SU(5) multiplets to avoid this
 - □ Singlets: N, N', (S)

□ 5-plets:

$$\bar{\mathbf{5}}_{M} = \begin{pmatrix} d_{1}^{c} \\ d_{2}^{c} \\ d_{3}^{c} \\ e^{-} \\ -\nu_{e} \end{pmatrix}_{L} \qquad \bar{\mathbf{5}}_{\xi'} = \begin{pmatrix} d_{1}^{\prime c} \\ d_{2}^{\prime c} \\ d_{3}^{\prime c} \\ \xi^{\prime -} \\ -\xi^{\prime 0} \end{pmatrix}_{L} \qquad \mathbf{5}_{\xi} = \begin{pmatrix} d_{1}^{\prime \prime} \\ d_{2}^{\prime \prime} \\ d_{3}^{\prime \prime} \\ d_{3}^{\prime \prime} \\ \xi^{+} \\ -\xi^{0} \end{pmatrix}_{R}$$

$$H_{5} = \begin{pmatrix} H_{1} \\ H_{2} \\ H_{3} \\ H_{4}^{\prime} \\ H_{0}^{\prime} \\ H_{0}^{\prime} \end{pmatrix} \qquad H_{5} = \begin{pmatrix} H_{1}^{\prime} \\ H_{2}^{\prime} \\ H_{3}^{\prime} \\ H_{6}^{\prime} \\ H_{6}^{\prime} \\ H_{6}^{\prime} \end{pmatrix}$$

matter 10-plet

Most general SU(5) invariant superpotential

MSSM scenario

$$W = y_1 N 5_{\xi} H_5 + y_2 N \overline{5}_{\xi'} H_5 + y_3 N \overline{5}_M H_5 + y_1' N' 5_{\xi} H_5 + y_2' N' \overline{5}_{\xi'} H_5 + y_3' N' \overline{5}_M H_5 + m_{\xi'} \overline{5}_M 5_{\xi} + m_{\xi} \overline{5}_{\xi'} 5_{\xi} + m_N N' N + m_{NN} NN + m_{N'N'} N' N' + y_d \overline{5}_M 10 H_5 + y_d' \overline{5}_{\xi'} 10 H_5 + y_u 10 10 H_5.$$

If charged under a discrete symmetry,

Multiplet

$$\bar{5}_M$$
 H_5
 $H_{\bar{5}}$
 N
 N'
 5_{ξ}
 $\bar{5}_{\xi'}$
 10

 \mathbb{Z}_3 charge
 1
 1
 1
 2
 0
 0
 1

the superpotential reduces to

$$W = y_3 N \bar{5}_M H_5 + y'_1, N' 5_{\xi} H_5 + y'_2 N' \bar{5}_{\xi'} H_5 + m_{\xi} \bar{5}_{\xi'} 5_{\xi} + m_N N' N y_d \bar{5}_M 10 H_5 + y_u 10 10 H_5 - \mu H_5 H_5.$$

10 / 16

Julius-Maximilians-UNIVERSITÄT

Interactions of d'

- Coloured components of mediator 5-plets
- Behave like heavy d-quarks
- RGE running leads to mass shift between quarks and lepton doublet
- Decay of d' protected by symmetry that forbids d = 5 operator

Cosmological constraints:

- From Big Bang Nucleosynthesis: Heavy nuclei → altering BBN processes → affecting observed abundancies of light elements e.g. locco et. al. (2009); Phys.Rept. 472
- Search for heavy hadrons in water excludes stable heavy d-like quarks Nardi, Roulet (1990); Phys. Lett. B 245, 105
- Effective operator $\epsilon^{ijklm}(5_{\xi})_i(H_5)_j(H_5)_k(10)_{lm}$ leads to the decay

$$\overline{d}'
ightarrow H^+_u \overline{u}$$

Interactions of d'

- Coloured components of mediator 5-plets
- Behave like heavy d-quarks
- RGE running leads to mass shift between quarks and lepton doublet
- Decay of d' protected by symmetry that forbids d = 5 operator

Cosmological constraints:

- From Big Bang Nucleosynthesis: Heavy nuclei → altering BBN processes → affecting observed abundancies of light elements e.g. locco et. al. (2009); Phys.Rept. 472
- Search for heavy hadrons in water excludes stable heavy d-like quarks Nardi, Roulet (1990); *Phys. Lett. B 245, 105*
- Effective operator $\epsilon^{ijklm}(5_{\xi})_i(H_5)_j(H_5)_k(10)_{lm}$ leads to the decay

$$\overline{d}'
ightarrow H^+_u \overline{u}$$

- The term $\mu H_u H_d$ explicitly breaks the discrete symmetry (Otherwise every operator of the type $LLH_uH_u(H_uH_d)^n$ has same charge as Weinberg operator)
- μ -problem of the MSSM (μ has to be set to 100 GeV to few TeV by hand)
- Same issue with TeV mediator masses

Possible Alternative:

Use the NMSSM where μ and the mediator masses are generated by VEV of an additional scalar field ${\it S}.$

Most general SU(5) invariant superpotential

NMSSM scenario

$$\begin{split} W &= y_1 \, N \, 5_{\xi} \, H_{\bar{5}} + y_2 \, N \, \bar{5}_{\xi'} \, H_5 + y_3 \, N \, \bar{5}_M \, H_5 + \\ & y_1', \, N' \, 5_{\xi} \, H_{\bar{5}} + y_2' \, N' \, \bar{5}_{\xi'} \, H_5 + y_3' \, N' \, \bar{5}_M \, H_5 + \\ & \lambda_{\xi'} \, S \, \bar{5}_M \, 5_{\xi} + \lambda_{\xi} \, S \, \bar{5}_{\xi'} \, 5_{\xi} + \lambda_N S \, N' \, N + \lambda_{NN} S \, NN + \lambda_{N'N'} S \, N' \, N' + \\ & y_d \, \bar{5}_M \, 10 \, H_{\bar{5}} + y_d' \, \bar{5}_{\xi'} \, 10 \, H_{\bar{5}} + y_u \, 10 \, 10 \, H_5 \, . \end{split}$$

BUT if all masses generated by $\langle S \rangle$ the effective operators become

$$\frac{1}{\langle S \rangle} LLH_u H_u , \qquad \frac{1}{\langle S \rangle^3} (LLH_u H_d) (H_u H_d) , \quad \dots$$

 $\Rightarrow \langle S \rangle$ breaks discrete symmetry

Superpotential constrains charges in a way that we always will have a d = 5 contribution.

Julius-Maximilians

We introduce an additional scalar S' and obtain the superpotential

$$\begin{split} W &= y_3 \, N \, \overline{5}_M \, H_5 + y_1', \, N' \, 5_{\xi} \, H_{\overline{5}} + y_2' \, N' \, \overline{5}_{\xi'} \, H_5 + \lambda_{\xi} \, S' \, \overline{5}_{\xi'} \, 5_{\xi} + \lambda_N S' \, N' N \\ &+ y_d \, \overline{5}_M \, 10 \, H_{\overline{5}} + y_u \, 10 \, 10 \, H_5 + \lambda_S \, S H_{\overline{5}} H_5 + \kappa S^3 + \lambda_S' \, S' \, H_{\overline{5}} H_5 + \kappa' \, S'^3 \, . \end{split}$$

we can choose the charges

Multiplet

$$\overline{5}_M$$
 H_5
 $H_{\overline{5}}$
 N
 N'
 5_{ξ}
 $\overline{5}_{\xi'}$
 10
 S
 S'
 \mathbb{Z}_3 charge
 1
 1
 1
 2
 0
 0
 1
 1
 0

• The term λ'_{S} breaks the symmetry softly.

UNIVERSITÄT Soft breaking of the discrete symmetry

- Couplings breaking the symmetry must be small! (Supression of the Weinberg operator)
- Soft breaking term $y'_3 N' \, \overline{5}_M \, H_5
 ightarrow d = 5$ contribution to $m_
 u$

$$m_{\nu}^{d=5}=rac{y_3y_3'v_u^2}{\langle S'
angle}\,.$$

We require

ulius-Maximilians-

$$m_{\nu}^{d=5} < m_{\nu}^{d=7} = \frac{y_1 y_2 y_3^2 v_u^3 v_d}{\langle S' \rangle^3}$$

$$\Rightarrow y_3' < \frac{y_1 y_2 y_3 v_u v_d}{\langle S' \rangle^2}$$

• d' decay via the soft breaking operator $\overline{5}_{\xi}H_{\overline{5}}10$

- Possible to use effective operators with d > 5 to generate neutrino masses
- New physics at TeV scale, phenomenological implications at LHC
- Full SU(5) multiplets necessary to not spoil unification
- Additional d-quarks → consider cosmological constraints, decay via effective operator or by soft symmetry breaking
- NMSSM realization with softly broken symmetry

Backup-Slides

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Decompositions

#	Operator	Mediators	SU(5) multiplets
1	$(H_u i \tau^2 \overline{L^c})(H_u i \tau^2 L)(H_d i \tau^2 H_u)$	1_{0}^{R} , 1_{0}^{L} , 1_{0}^{s}	1, 1, 1
2	$(H_u i \tau^2 \vec{\tau} L^c) (H_u i \tau^2 L) (H_d i \tau^2 \vec{\tau} H_u)$	3_{0}^{R} , 3_{0}^{L} , 1_{0}^{R} , 1_{0}^{L} , 3_{0}^{s}	24, 24, (1), (1), 24
3	$(H_u i \tau^2 \vec{\tau} \overline{L^c}) (H_u i \tau^2 \vec{\tau} L) (H_d i \tau^2 H_u)$	3_{0}^{R} , 3_{0}^{L} , 1_{0}^{s}	24, 24, 1
4	$(-\mathrm{i}\epsilon^{abc})(H_{u}\mathrm{i}\tau^{2}\tau^{a}\overline{L^{c}})(H_{u}\mathrm{i}\tau^{2}\tau^{b}L)(H_{d}\mathrm{i}\tau^{2}\tau^{c}H_{u})$	3 ^{<i>R</i>} ₀ , 3 ^{<i>L</i>} ₀ , 3 ^{<i>s</i>} ₀	24, 24, 24
5	$(\overline{L^c}\mathrm{i}\tau^2\vec{\tau}L)(H_d\mathrm{i}\tau^2H_u)(H_u\mathrm{i}\tau^2\vec{\tau}H_u)$	$3_{\pm1}^{s}, 3_{\pm1}^{s}, 1_{0}^{s}$	15, 15, 1
6	$(-i\epsilon_{abc})(\overline{L^{c}}i\tau^{2}\tau_{a}L)(H_{d}i\tau^{2}\tau_{b}H_{u})(H_{u}i\tau^{2}\tau_{c}H_{u})$	$3_{\pm1}^{s}$, $3_{\pm1}^{s}$, 3_{0}^{s}	15, 15, 24
7	$(H_u i \tau^2 \overline{L^c}) (L i \tau^2 \vec{\tau} H_d) (H_u i \tau^2 \vec{\tau} H_u)$	1_{0}^{R} , 1_{0}^{L} , 3_{-1}^{R} , 3_{-1}^{L} , 3_{+1}^{s}	$1, 1, 15, \overline{15}, 15$
8	$(-i\epsilon^{abc})(H_ui\tau^2\tau^a\overline{L^c})(Li\tau^2\tau^bH_d)(H_ui\tau^2\tau^cH_u)$	3_{0}^{R} , 3_{0}^{L} , 3_{-1}^{R} , 3_{-1}^{L} , 3_{+1}^{s}	$24, 24, 15, \mathbf{\overline{15}}, 15$
9	$(H_u \mathrm{i} \tau^2 \overline{L^c})(\mathrm{i} \tau^2 H_u)(L)(H_d \mathrm{i} \tau^2 H_u)$	$1_{0}^{R}, 1_{0}^{L}, 2_{-1/2}^{R}, 2_{-1/2}^{L}, 1_{0}^{s}$	$1, 1, 5, \overline{5}, 1$
10	$(H_u \mathrm{i} \tau^2 \vec{\tau} \overline{L^c}) (\mathrm{i} \tau^2 \vec{\tau} H_u) (L) (H_d \mathrm{i} \tau^2 H_u)$	3_{0}^{R} , 3_{0}^{L} , $2_{-1/2}^{R}$, $2_{-1/2}^{L}$, 1_{0}^{s}	$24, 24, 5, \mathbf{\overline{5}}, 1$
11	$(H_u i \tau^2 \overline{L^c})(i \tau^2 H_u)(\vec{\tau} L)(H_d i \tau^2 \vec{\tau} H_u)$	1_0^R , 1_0^L , $2_{-1/2}^R$, $2_{-1/2}^L$, 3_0^s	$1, 1, 5, \overline{5}, 24$
12	$(H_u \mathrm{i} \tau^2 \tau^a \overline{L^c}) (\mathrm{i} \tau^2 \tau^a H_u) (\tau^b L) (H_d \mathrm{i} \tau^2 \tau^b H_u)$	3_{0}^{R} , 3_{0}^{L} , $2_{-1/2}^{R}$, $2_{-1/2}^{L}$, 3_{0}^{s}	$24, 24, 5, \overline{5}, 24$
13	$(H_u \mathrm{i} \tau^2 \overline{L^c})(L)(\mathrm{i} \tau^2 H_u)(H_d \mathrm{i} \tau^2 H_u)$	1_{0}^{R} , 1_{0}^{L} , $2_{+1/2}^{s}$, 1_{0}^{s}	1, 1, 5, 1
14	$(H_u i \tau^2 \vec{\tau} \overline{L^c})(\vec{\tau} L)(i \tau^2 H_u)(H_d i \tau^2 H_u)$	3_{0}^{R} , 3_{0}^{L} , $2_{+1/2}^{s}$, 1_{0}^{s}	24, 24, 5, 1
15	$(H_u \mathrm{i} \tau^2 \overline{L^c})(L)(\mathrm{i} \tau^2 \vec{\tau} H_u)(H_d \mathrm{i} \tau^2 \vec{\tau} H_u)$	1_{0}^{R} , 1_{0}^{L} , $2_{+1/2}^{s}$, 3_{0}^{s}	1, 1, 5, 24
16	$(H_u \mathrm{i} \tau^2 \tau^a \overline{L^c})(\tau^a L)(\mathrm{i} \tau^2 \tau^b H_u)(H_d \mathrm{i} \tau^2 \tau^b H_u)$	3_{0}^{R} , 3_{0}^{L} , $2_{+1/2}^{s}$, 3_{0}^{s}	24, 24, 5, 24
17	$(H_u \mathrm{i} \tau^2 \overline{L^c})(H_d)(\mathrm{i} \tau^2 H_u)(H_u \mathrm{i} \tau^2 L)$	1_{0}^{R} , 1_{0}^{L} , $2_{-1/2}^{R}$, $2_{-1/2}^{L}$	$1, 1, 5, \overline{5}$
18	$(H_u \mathrm{i} \tau^2 \vec{\tau} \overline{L^c})(\vec{\tau} H_d)(\mathrm{i} \tau^2 H_u)(H_u \mathrm{i} \tau^2 L)$	3_{0}^{R} , 3_{0}^{L} , $2_{-1/2}^{R}$, $2_{-1/2}^{L}$, 1_{0}^{R} , 1_{0}^{L}	$24, 24, 5, \overline{5}, (1), (1)$
19	$(H_u \mathrm{i} \tau^2 \overline{L^c})(H_d)(\mathrm{i} \tau^2 \vec{\tau} H_u)(H_u \mathrm{i} \tau^2 \vec{\tau} L)$	1_{0}^{R} , 1_{0}^{L} , $2_{-1/2}^{R}$, $2_{-1/2}^{L}$, 3_{0}^{R} , 3_{0}^{L}	$(1), (1), 5, \overline{5}, 24, 24$
20	$(H_u \mathrm{i} \tau^2 \tau^a \overline{L^c})(\tau^a H_d)(\mathrm{i} \tau^2 \tau^b H_u)(H_u \mathrm{i} \tau^2 \tau^b L)$	3_{0}^{R} , 3_{0}^{L} , $2_{-1/2}^{R}$, $2_{-1/2}^{L}$,	$24,24,5,\overline{5}$
21	$(\overline{L^{c}}\mathrm{i}\tau^{2}\tau^{a}L)(H_{u}\mathrm{i}\tau^{2}\tau^{a})(\tau^{b}H_{d})(H_{u}\mathrm{i}\tau^{2}\tau^{b}H_{u})$	$\overline{3_{+1}^{s}$, $2_{+1/2}^{s}$, 3_{+1}^{s}	15, 5, 15
22	$(\overline{L^c}i\tau^2\tau^a L)(H_di\tau^2\tau^a)(\tau^b H_u)(H_ui\tau^2\tau^b H_u)$	$3_{\pm 1}^{s}, 2_{\pm 3/2}^{s}, 3_{\pm 1}^{s}$	15, 40, 15
23	$(\overline{L^{c}}; -2 \neq 1)(\Box; -2 \neq 1)(\Box)(\Box; -2 = 1)$	25 25 15	15 5 1