Results from the ICARUS experimental search in the LSND anomaly region

MAGING

COSM

Ettore Segreto Laboratori Nazionali del Gran Sasso (Italy) on behalf of the **ICARUS Collaboration**

DISCRETE 2012 The Third Symposium on Prospects in the Physics of Discrete Symmetries 3-7 December 2012, Lisbon

NDHROROUND

GNALS

The ICARUS Collaboration

M. Antonello^a, P. Aprili^a, B. Baibussinov^b, P. Benetti^c, E. Calligarich^c, N. Canci^a, S. Centrob, A. Cesana^f, K. Cieslik^g, D. B. Cline^h, A.G. Cocco^d, A. Dabrowska^g, D. Dequal^b, A. Dermenevⁱ, R. Dolfini^c, C. Farnese^b, A. Fava^b, A. Ferrari^j, G. Fiorillo^d, D. Gibin^b, S. Gninenkoⁱ, A. Guglielmi^b, M. Haranczyk^g, J. Holeczek^l, A. Ivashkinⁱ, J. Kisiel^l, I. Kochanek^l, J. Lagoda^m, S. Mania^l, G. Mannocchiⁿ, A. Menegolli^c, G. Meng^b, C. Montanari^c, S. Otwinowski^h, L. Perialeⁿ, A. Piazzoli^c, P. Picchiⁿ, F. Pietropaolo^b, P. Plonski^o, A. Rappoldi^c, G.L. Raselli^c, M. Rossella^c, C. Rubbia^{a,j}, P. Sala^f, A. Scaramelli^f, E. Segreto^a, F. Sergiampietri^p, D. Stefan^a, J. Stepaniak^m, R. Sulej^{m,a}, M. Szarska^g, M. Terrani^f, F. Varanini^b, S. Ventura^b, C. Vignoli^a, H. Wang^h, X. Yang^h, A. Zalewska^g, K. Zaremba^o.

- b Dipartimento di Fisica e INFN, Università di Padova, Via Marzolo 8, I-35131 Padova, Italy
- c Dipartimento di Fisica Nucleare e Teorica e INFN, Università di Pavia, Via Bassi 6, I-27100 Pavia, Italy
- d Dipartimento di Scienze Fisiche, INFN e Università Federico II, Napoli, Italy
- f INFN, Sezione di Milano e Politecnico, Via Celoria 16, I-20133 Milano, Italy
- g Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Science, Krakow, Poland
- h Department of Physics and Astronomy, University of California, Los Angeles, USA
- i INR RAS, prospekt 60-letiya Oktyabrya 7a, Moscow 117312, Russia
- j CERN, CH-1211 Geneve 23, Switzerland
- k Institute of Theoretical Physics, Wroclaw University, Wroclaw, Poland
- I Institute of Physics, University of Silesia, 4 Uniwersytecka st., 40-007 Katowice, Poland
- m National Centre for Nuclear Research, A. Soltana 7, 05-400 Otwock/Swierk, Poland
- n Laboratori Nazionali di Frascati (INFN), Via Fermi 40, I-00044 Frascati, Italy
- o Institute of Radioelectronics, Warsaw University of Technology, Nowowiejska, 00665 Warsaw, Poland
- 06/12/12 p INFN, Sezione di Pisa. Largatar Pontecouvo, 3, SE561220 Pisa Littaty

a Laboratori Nazionali del Gran Sasso dell'INFN, Assergi (AQ), Italy

The ICARUS T600 Detector

Two "T300" identical modules

- **3.6 x 3.9 x 19.6** ≈ 275 m³ each
- Liquid Ar active mass: ≈ 476 t
- Drift length = 1.5 m
- HV = -75 kV E = 0.5 kV/cm
- v_{drift} = 1.55 mm/μs
 06/12/12

4 wire chambers:

- 2 chambers per module
 - 3 readout wire planes per chamber, wires at 0°, ±60°
- ≈ 53000 wires, 3 mm pitch, 3 mm plane spacing
- PMT for scintillation light:
 - (20+54) PMTs, 8"Ø
- Ettore Segreto MUCksensitives (128nm) with wave shifter (TPB)

LAr-TPC purification (<60 part per trillion O₂ equiv.)

- A main feature of the ICARUS R&D:
 - ✓ Highly efficient filters based on Oxysorb/Hydrosorb;
 - ✓ Ultra High Vacuum techniques;
 - ✓ Continuous purification by recirculation in liquid & gas.
- τ_{ctrons} > 5 ms (~60 ppt [O2]_{eq}) corresponding to a free electron attenuation of 17% after 1.5 m (longest path length);
- 11 accidental purity stops until now. New pumps ready. 06/12/12 Ettore Segreto DISCRETE2012 Lisbon

ICARUS T600 physics program

- ICARUS T600
 - ✓ major milestone towards *multi-kton high performance LAr detectors*: unique *imaging* capability, high *spatial/calorimetric* resolutions, e/π_0 separation power
 - ✓ Interesting physics potentialities in itself
- the detector is collecting CNGS events. For 10²⁰ pot:
 - ✓ 2800 CC + 900 NC events expected
 - ✓ Muons from upstream GS rock ≈ 12000 ev (≈ 8200 on TPC front face)
 - ✓ Intrinsic beam v_e CC ≈ 26 ev
 - ✓ v_{μ} → v_{τ} detecting τ decay with kinematical criteria (~2 event τ→e)
 - ✓ $v_{\mu} \rightarrow v_{e}$ (θ_{13}) from e-like CC events excess at E < 20 GeV (~5 events CC)
 - Search for sterile neutrinos in LSND parameter space, studying e-like CC events at E > 10 GeV
- ICARUS is also simultaneously collecting "self triggered" events:
 - ✓ \approx 100 ev/year of *atmospheric* v CC interactions.
 - ✓ Proton decay with $3x10^{32}$ nucleons , zero bckg. in some of the channels
- ICARUS contributed to the *superluminal neutrino problem raised by OPERA*:
 - ✓ Search for the *analogue to Cherenkov radiation* by high energy CNGS neutrinos at superluminal speeds: *Physics Letters B* 711 (3-4): 270–275
 - ✓ Precision Measurement of the neutrino time-of-flight with the 2011 (Physics Letters B 06/12/12 (1): 17–22) and 2012 (arXiv:1208.2629) CNGS v_u bunched beams

Precision measurement of the neutrino velocity

- In May 2012 the CERN-CNGS neutrino beam has been operated (1.8 × 10¹⁷ pot)., with the proton beam made of bunches, few ns wide and separated by 100 ns. This beam structure allows a very accurate time of flight measurement of neutrinos from CERN to LNGS;
- Four different time distribution systems:
 - ✓ Existing LNGS PPmS (1kHz) signal synchronized with a PolaRx2 GPS receiver is sent underground through an ~8 km optical fiber (already used in 2011 measurement);
 - ✓ HPTF Borexino setup: ICARUS trigger signal sent through an ~ 9 km optical fiber to a new independent clock synchronization system (Rb clock + PolaRx4 GPS receiver);
 - ✓ White Rabbit: open source protocol for reliable, fast and deterministic transmission of control information. Set up at CERN and LNGS by CERN staff => Two different inter-calibrated GPS receivers (PolarRx2 and PolarRx4) Provides 2kHz signal recorded by ICARUS PMT-DAQ Time stamping exploited for the ICARUS trigger signal
- ICARUS PMT readout equipped with independent DAQ system based on 8 bit, 1GHz Acqiris AC240 digitizers
- New geodetic high precision measurement of CERN-ICARUS baseline ($\sigma \sim 4$ cm) from Politecnico di Milano
- ICARUS observed 25 beam events: 17 rock μ 's (1 stopping); 6 ν_{μ} CC; 2 ν NC
- Reference point for neutrino timing: upstream wall position of ICARUS active volume. Topological corrections (visual scanning): vertex position; γ propagation from vertex to "identified" closest PMT
- Actual result (arXiV:1208.2629):

 $\delta(v/c) = (v_{v \in t, c})/c = 0.4 + 2.8 \text{ stat} + 9.8 \text{ syst} 10^{-7}$

ICARUS (CNGS2) data collection

ICARUS T600 operational since Oct. 1st 2010

Mar-01 Apr-01 May-01 Jun-01 Jul-01 Aug-01 Sep-01

Date

2011: Mar. 19th ÷ Nov. 14th

- Detector live-time > 93% in 2011 and 2012;
- End data taking: December 2012;
- Analyzed to date: 3.3 10¹⁹ pot (1091 contained events) ≈ 1/3 of "ultimate" sample;

The new frontier

- The discovery of a *Higgs boson* at CERN/LHC has crowned the successful Standard Model (SM) and will call for a verification of the Higgs couplings to the gauge bosons and to the fermions.
- *Neutrino masses and oscillations* represent today a main experimental evidence of physics beyond the Standard Model.
- Being the only elementary fermions whose basic properties are still largely unknown, neutrinos must naturally be one of the main priorities to complete our knowledge of the SM.
- Albeit still unknown precisely, *the incredible smallness of the neutrino rest masses*, compared to those of other elementary fermions points to some specific scenario, awaiting to be elucidated.
- The astrophysical importance of neutrinos is immense

"Sterile" neutrinos ?

- Sterile neutrinos are a hypothetical type of neutrino that *does not interact via any of the fundamental interactions* of the Standard Model except gravity.
- Since per se they may not interact directly, they are extremely difficult to detect. If they are heavy enough, they may also contribute to dark matter.
- Sterile neutrinos may mix with ordinary neutrinos via a mass term.
 Evidence may be building up by *"anomalies"* observed by several neutrino experiments:
 - ✓ sterile neutrino(s) with $\Delta m^2 \approx 10^{-2} 1 \text{ eV}^2$ from v_e observation in v_μ accelerator experiments (LNSD anomaly).
 - Neutrino disappearance may have been observed in *nuclear* reactors and very intense (megacurie) electron conversion
 neutrino sources with maybe comparable mass differences

Over-all evidence is mounting...

Anomaly	Source	Туре	Channel	Significance
LSND	Short	Decay at rest	-νμ ->ve	3.8 σ
	baseline		CC	
MiniBoone	Short	Neutrino	-νµ ->νe	3.0 σ
	baseline	beam	CC	Combined evidence
MiniBoone	Short	Anti-Neutr.	anti-vµ −>ve	1.7 <i>≈ 3.8 s</i>
	baseline	beam	CC	
Gallium	Electron	Source	v disapp.	2.7 σ
	capture			
Reactors	Fission	Beta decay	v disapp.	3.0 σ
Cosmology	Big bang	No of		≈ 2 σ
	WMAP	neutrino		

Combined evidence for some possible anomaly : (3.8 + 3.8 + 2.7 + 3.0 + 2.0) S.D !

Neutrino related anomalies

The present experiment looks for the a LSND like v_{μ} -> v_e signal from the LNGS v_{μ} beam at 730 km and 10 $\leq E_v \leq$ 30 GeV

LAr TPC performance

Tracking device

 Precise 3D topology and accurate ionization measurement

✓ Momentum via multiple scattering

- Measurement of local energy deposition dE/dx
 ✓ e /γ remarkable separation (0.02 X₀ samples)
 ✓ Particle identification by dE/dx vs range
- Total energy reconstruction of the events from charge integration
 - ✓ Full sampling, homogeneous calorimeter with excellent accuracy for contained events

RESOLUTIONS Low energy electrons: Electromagn. showers: Hadron shower (pure LAr):

 $\sigma(E)/E = 11\% / V E(MeV)+2\%$ $\sigma(E)/E = 3\% / V E(GeV)$ $\sigma(E)/E \approx 30\% / V E(GeV)$ Effore Segreto DISCRETE2017 Lisbon

3D reconstruction from three views 0°, \pm 60° (stopping μ)

Calorimetric reconstruction

• Electrons from μ decay (Michel electrons)

Energy resolution =
$$\frac{\sigma}{E} = \frac{(13 \pm 2)\%}{\sqrt{E(MeV)}} \oplus (1.8 \pm 0.3)\%$$

Ettore Segreto DISCRETE2012 Lisbon

Run 9927 Event 572

Signal selection

- CNGS facility delivers an almost pure v_μ beam peaked in the range 10 ≤ E_ν ≤ 30 GeV (beam associated v_e about 1/2%). The signature of the v_μ-> v_e signal is observed visually.
- Present sample: 1091 neutrino events from 2010 and 2011. There are differences with respect to LNSD experiment:
 - ✓ $L/E_v \simeq 1 \text{ m/MeV}$ at LNSD, but $L/E_v \approx 36.5 \text{ m/MeV}$ at CNGS
 - ✓ A LNSD-like short distance oscillation signal averages to sin²(1.27∆m²_{new} L /E) ~1/2 and <P>_{vµ→ve} ~ 1/2 sin²(2ϑ_{new})
- Expected conventional $v_{\mu} \rightarrow v_{e}$ in the same energy range and fiducial volumes :
 - ✓ 3 events due to the *intrinsic* v_e beam contamination
 - ✓ 1.3 events due to ϑ_{13} oscillations:
 - ✓ 0.7 events of v_{μ} -> v_{τ} oscillations with electron production.
- The total is therefore of **5** expected events.

Event simulation with Montecarlo

- The detection of events has been *widely simulated by a very sophisticated Montecarlo emulation,* reproducing in every detail the actual signals from the wire planes. *The agreement between MC and observed events has been excellent.*
- An *"electron signature"* has been defined by presence of a *single minimum ionizing relativistic electron track*:
 - ✓ of sufficient length from the vertex, subsequently building up into a shower; very dense sampling: *every 0.02 X₀* !!!
 - ✓ clearly separated from other ionizing tracks near the vertex in at least one of the two transverse views.
- Visibility cuts reduce the probability of identification of an electron tracks to η = 0.74 ± 0.05. In a good approximation η is independent of the shape of the energy spectrum.
- The number of expected events with visible $v_{\mu} \rightarrow v_e$ is then 3.7.

Visual identification of a v-e event (MC)

06/12/12

Events in the data

- Two CC events have been observed in data sample, with a clearly identified electron signature:

 a) total energy = 11.5 ± 1.8
 GeV, P_t = 1.8 ± 0.4 GeV/
 b) Total visible energy = 17
 - GeV. P_t = 1.3 ±0.18 GeV/c
- In both events the single electron shower in the transverse plane is clearly opposite to the remaining part of the event
 06/12/12

Results

- The ICARUS experiment is presently compatible with the absence of a LSND anomaly. The limits due to the LSND anomaly are respectively 3.41 (90% CL) and 7.13 events (99% CL)
- Given the sample of 627 v_{μ} CC events, the limits to the oscillation probability are:

 $\begin{array}{l} P_{\nu\mu \to \nu e} \leq 5.4 \; x \; 10^{-3} \; (90\% \; CL) \\ P_{\nu\mu \to \nu e} \leq 1.1 \; x \; 10^{-2} \; (99\% \; CL) \end{array}$

• The exclusion area is shown for the plot $\Delta m^2 - \sin^2(2\theta)$. At small Δm^2 ICARUS strongly enhances the sensitivity with respect to the short baseline experiments.

Ettore Segreto

With $(\Delta m^2 - \sin^2(2\theta)) = (0.11 \text{ eV}^2, 0.10)$ as many as 30 events should have been seen

The low energy excess ?

- The ICARUS result excludes a substantial fraction of the MiniBooNE curves corresponding • to lines from 1 to 5.
- The origin of the $L/E_{v} > 1$ (low energy) excess observed by MiniBooNE may need further • clarification.

Conclusions

- The present result strongly limits the window of opened options for the LSND anomaly, reducing the remaining effect to a narrow region centered around (Δm^2 $-\sin^2(2\theta)) = (0.5 \text{ eV}^2 \text{ and}$ 0.05) where there is an overall agreement (90 % CL) between
 - ✓ the present ICARUS limit,✓ the limits of KARMEN and
 - ✓ the positive signals of LSND and MiniBooNE collaborations

LSND-like exclusion due to the present experiment

A next step on sterile oscillations with the LAr -TPC

- In order to clarify the previously indicated and surviving LSND/ MiniBooNE (Δm² –sin²(2θ)) region, the ICARUS LAr detector will be moved next to CERN, at a much shorter distances (300 m and 1.8 km) and lower neutrino energies.
- This will increase the events rate, reduce the over-all multiplicity of the events, enlarge the angular range and therefore improve substantially the visual electron selection efficiency.
- In absence of oscillations, apart some beam related small spatial corrections, the two spectra at different distances should be a precise copy of each other, independently of the specific experimental event signatures and without any Montecarlo comparisons.
- This will presumably permit a definitive clarification of the "LNSD anormaly". Ettore Segreto DISCRETE2012 Lisbon 25

BACK UP

Real data and MC simulated tracks

- *dE/dx of individual 3 mm track segments reconstructed in 3D,* after removing δ rays and e.m. cascades
- **Excellent agreement** between real and simulated data with the theoretical Landau distribution

06/12/12

The MiniBooNE low energy effect

- The energy dependent neutrino experimental spectrum (1) is characterized by a large peak of events with E < 450 MeV (1).
- In the peak region the dominant signal is due to v_{μ} misidentified background (2)
- Expectations from LNSD (2) + the v_µ background(3) below E
 < 450 MeV do not add (4) to the observed signal (1)

