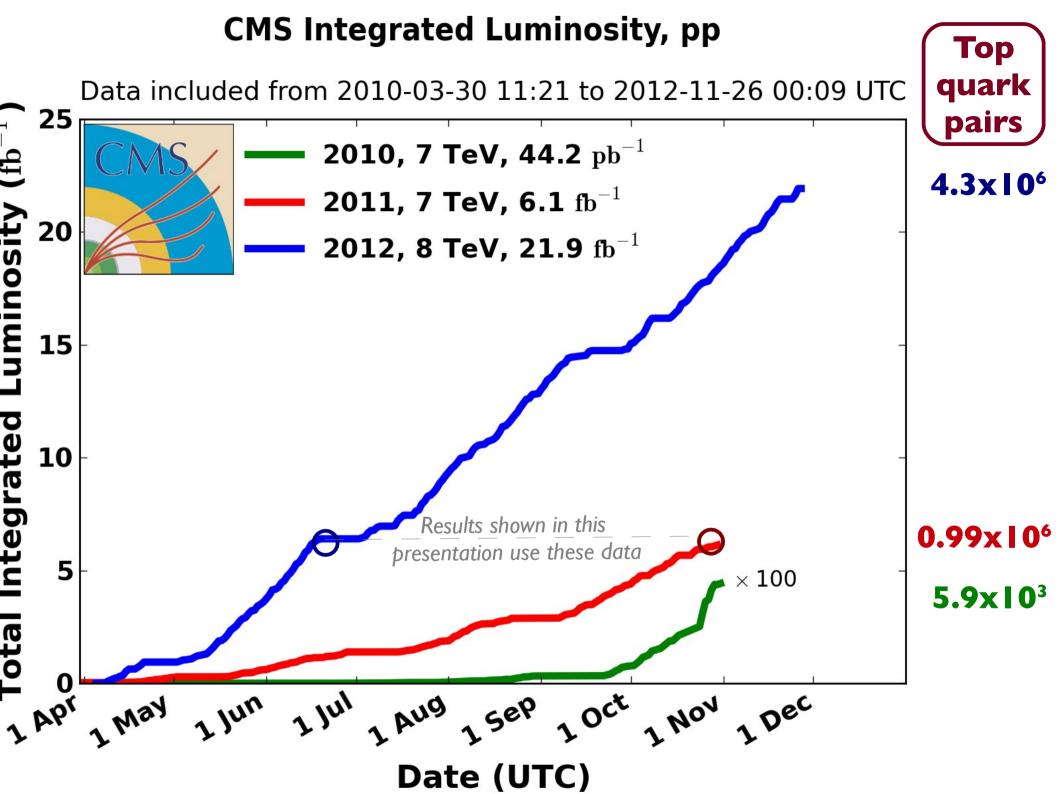
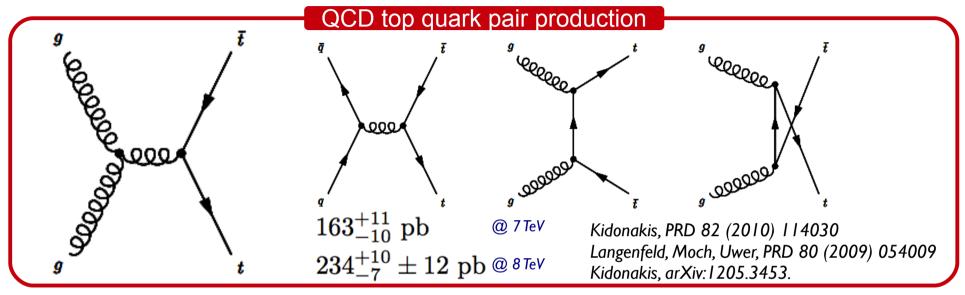

Measurements of the top-quark mass and production cross section at CMS

Pedro Ferreira da Silva (CERN/LIP)

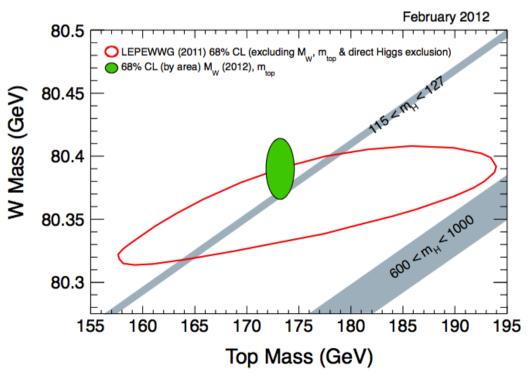


DISCRETE 2012


3rd December 2012

CFTP Instituto Superior Técnico, Lisboa

At the LHC we can learn a lot from the following process

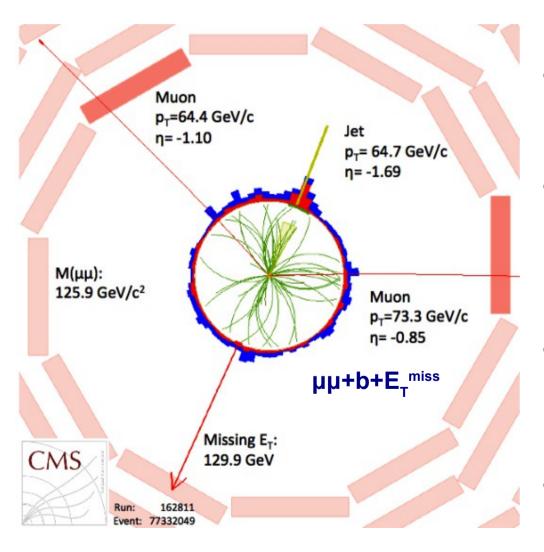


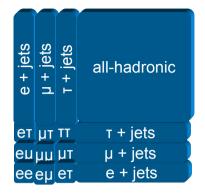
- Production rate
- Production environment

How precise are top predictions @ the LHC?

- Unique role in EWK symm. breaking ►
 - measure fundamental th. parameters
 - look for deviations/signs of new physics

Strong coupling constant, top mass, etc.





Selecting top quarks at CMS

for an overview of CMS results see J. Varela @ plenary session

We identify top(s) through its main decay: t → Wb >

Trigger

- Single/double (isolated) leptons
- and/or based on hadronic activity

Jets

- → Anti-k₊ algorithm with R=0.5
- \rightarrow p_T>20 GeV |η|<2.5-4.5 (analysis dependent)
- b-tagging (optional)

• Leptons (e, μ , τ) with $p_{\tau}>20 |\eta|<2.5$

- Isolation in tracker and calorimeters
- Reconstruction quality, i.e. ID
 (number of hits, X², conversion veto, etc.)

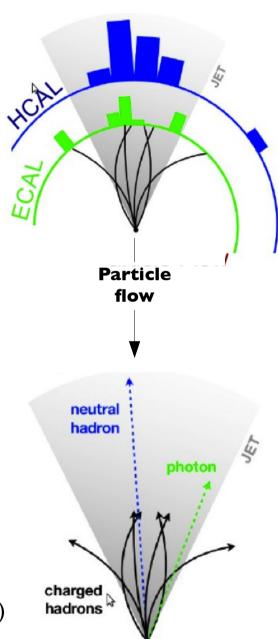
Missing transverse energy (E_T^{miss})

- Requirement is optional
- Ranging from 20 to 60 GeV

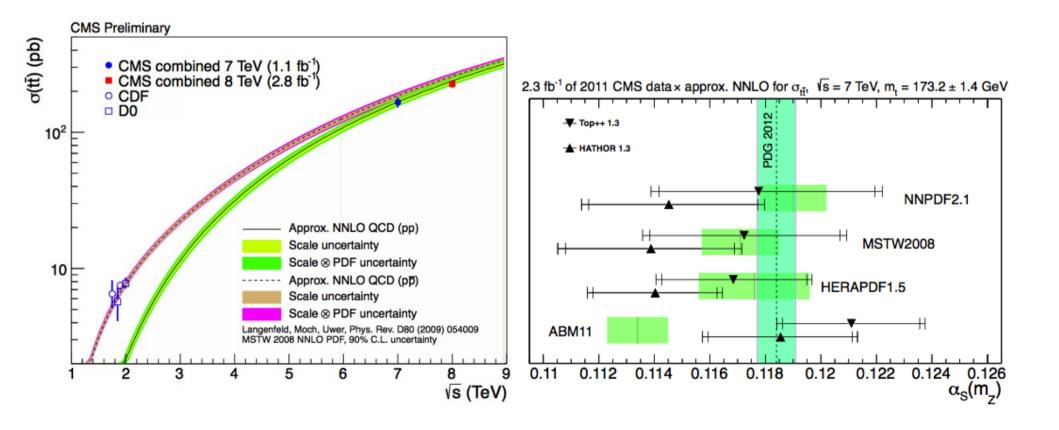
Global event description approach

- Charge-based separation of components making best use of:
 - → field integral

$$B \times R = 4.9 \text{ T} \cdot \text{m}$$

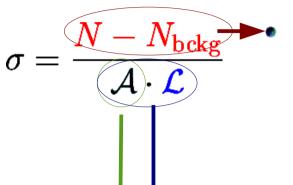

woheadrightarrow calorimeter granularity $\Delta \eta imes \Delta \phi|_{
m ECAL} \sim 0.017^2$

$$\Delta \eta \times \Delta \phi|_{\text{HCAL}} \sim (5 \cdot \Delta \eta) \times (5 \cdot \Delta \phi)|_{\text{ECAL}}$$


- iterative tracking (progressively relaxing constraints/removing hits)
- → After linking sub-detector elements → particle candidates
- Particle flow yields a global description of each event
- ullet A reconstructed jet is "again" a cluster of particles lacktriangle

Algorithm	Calorimeter-based		Particle Flow	
Composition	Towers	Charged Hadrons	Photons A	Neutral hadrons
Energy fraction	100%	65%	25%	10%
Energy	$E_{HCAL} + E_{ECAL}$		$\sum_{k=h^\pm,h^0,\gamma,\ell}\!\!\!E_k$	
Resolution (σ)	$120\%~\sqrt{E}$	$1\%~p_T$	$1\%~\sqrt{E}$	$120\%~\sqrt{E}$
Direction	biased by \vec{B}	vertex-based	good resolution	-

- crucial for b-jets (e.g. reduce material budget uncertainty on energy scale)
- crucial for missing transverse energy resolution ($ec{p}$ T miss = $-\sum_{k=h^\pm,h^0,\gamma,\ell} ec{p}_{\mathrm{T},k}$



Cross section measurements

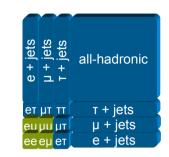
Ingredients for a measurement of the cross section

High statistics and low background channels

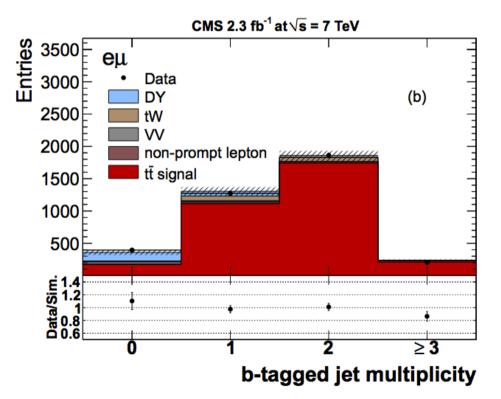
- → Leptons (e or µ) in final state yield efficient rejection of multijets background
- e/μ+jets: high statistics, limited backgrounds (W+jets and QCD multijets)
- ee/eμ/μμ: low statistics and low background (mostly Drell-Yan and dibosons)
- Establish the cross section in all channels: combination yields ultimate precision

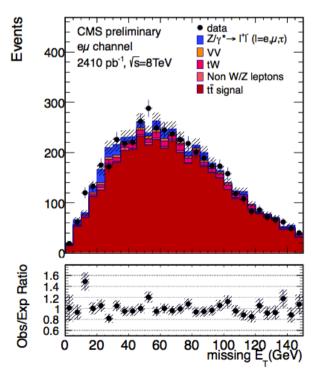
Characterization of our signal

- Madgraph (LO) models top pair production: matrix element approach for the generation of up to 3 jets interfaced with Pythia for showering. Powheg (NLO) is used for single top. (Note: Different generators are compared for both)
- Main unknowns are: factorisation/renormalization scale –
 Q², jet-parton matching scale and top mass
 - → "educated guesses" are also constrainable from data
 - Hadronization/b-jet uncertainties included in the jet energy uncertainty
 - ISR/FSR variations included in Q² uncertainty


Detector uncertainties

- jet energy scale/resolution, b-tag efficiency, trigger/selection efficiency
- luminosity normalization (2.2% at 7 TeV / 4.4% at 8 TeV)




Dilepton analysis: most precise

- Cleanest signature, main background from:
 - **→ Drell-Yan** (Z-window is vetoed in ee/µµ and used to rescale DY contribution)
 - → **Single top-tW** and dibosons (from MC)
 - Residual fake leptons (controlled from sidebands using fake rate/efficiency)

Almost background-free even without requiring b-tags or E₊^{miss}

Cross section extracted using a profile likelihood ratio method or cut and count

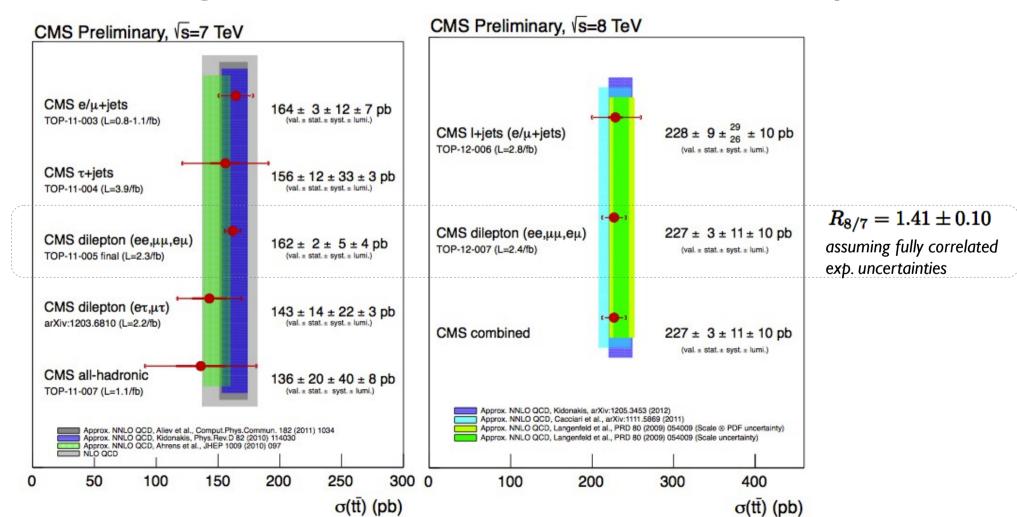
Uncertainties in dilepton analysis

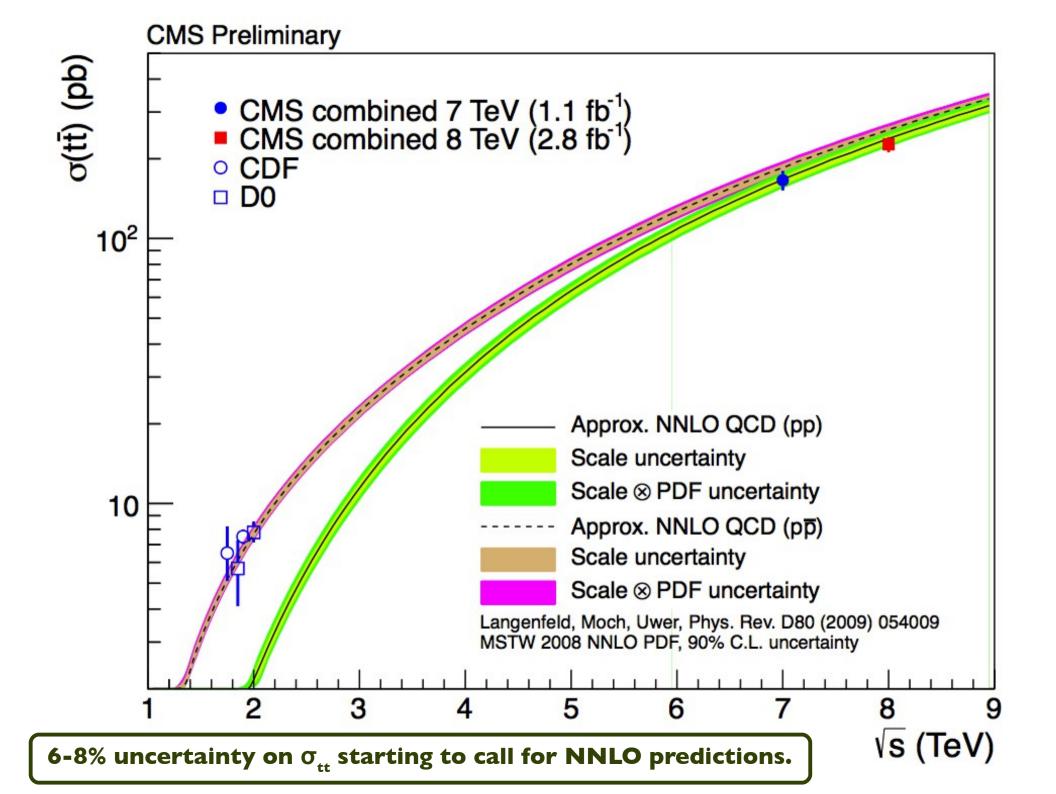
Results	$rac{ extsf{7 TeV}}{161.9~\pm~2.5_{ m stat}}$	+5.1 -5.0 syst	±	$3.6_{ m lumi}$	pb	8 ТеV 227	±	$3_{ m stat}$	土	$11_{ m syst}$	±	$10_{ m lumi}$	pb
4.2%							6.7%	6					

- Comparing uncertainties for cut and count
 - final unc. at 7 TeV reduced with profile likelihood
- Main uncertainties:
 - **instrumental** (jet energy scale, luminosity)
 - 0.8% uncertainty on **BR(W→IV**₁)
 - **Irreducible background** tW
- **Dependency on top mass** derived at 7 TeV

$$rac{\sigma_{
m tar{t}}}{\sigma_{
m tar{t}}(m_{
m t}=172.5)} = 1.00 - 0.008 \cdot (m_{
m t}-172.5) \ -0.000137 \cdot (m_{
m t}-172.5)^2$$

Source	$\Delta \sigma_{ m t\bar{t}}$ (%	6) from
Source	7 TeV	8 TeV
Di-bosons	0.4	0.1
Single top - tW	2.3	1.0
Non W/Z leptons	0.6	1.4
Drell-Yan	1.0	0.7
Lepton efficiencies	1.7	1.8
Lepton energy scale	0.5	0.3
Jet energy scale	2.8	2.5
Jet energy resolution	0.5	1.7
$E_{ m T}^{ m miss}$	1.9	-
b-tagging	1.1	0.9
Pileup	0.7	1.5
Branching ratio	2.7	1.7
$\mathbf{Q^2}$	1.0	0.7
ME-PS scale	1.0	0.7
Total	5.6	4.7


using the current world average: $161.3 \pm 2.5_{\rm stat} \stackrel{+5.3}{_{-5.2}}_{\rm syst} \pm 3.6_{\rm lumi}$ pb


→ 4.3% uncertainty

Current word from CMS on σ_{tt}

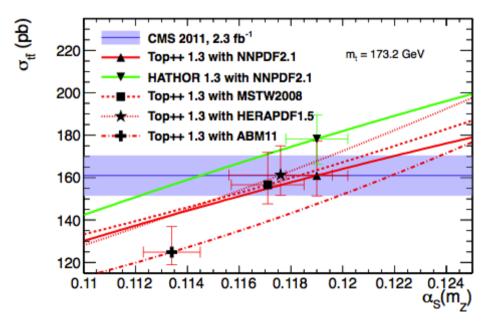
- Full combination (@ 8 TeV) is performed using a binned maximum likelihood fit
 - Add uncertainties as scale factors affecting rates (nuisance parameters)
 - → Link common uncertainties to all channels with the same nuisance (100% correlation)
- Excellent agreement between different channels and with theoretical predictions

...and current word from CMS- σ_{tt} on

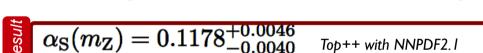
12/27

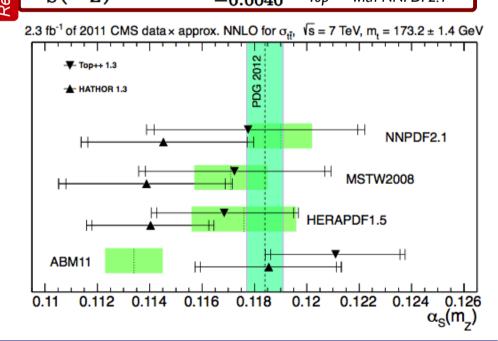
Coupling of strong interactions

 m_{top} and α_s can't be determined simultaneously from $\sigma_{tt} \rightarrow constrain$ one when measuring the other


$$\mathcal{L}(x) = \int d\sigma \ f_{ ext{exp}}(\sigma_{tar{t}}|x) \ f_{ ext{th}}(\sigma_{tar{t}}|x) \ x = lpha_{ ext{S}} ext{ or } m_{ ext{t}}$$

Experimental measurement (gaussian)


PDF uncertainty convolved with rectangular "prior" on O^2 scale

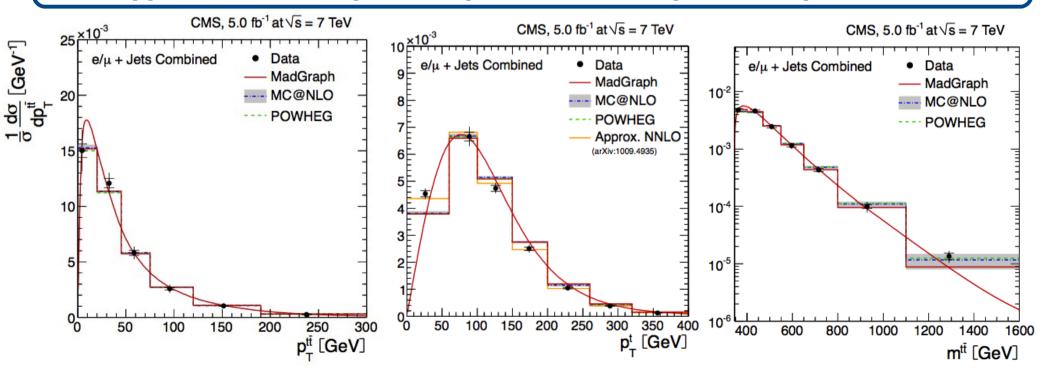

Experimental measurement (gaussian

 σ=σ(α_s) is determined from Top++ and HATHOR with different PDFs

Good agreement with world average

all-hadronic

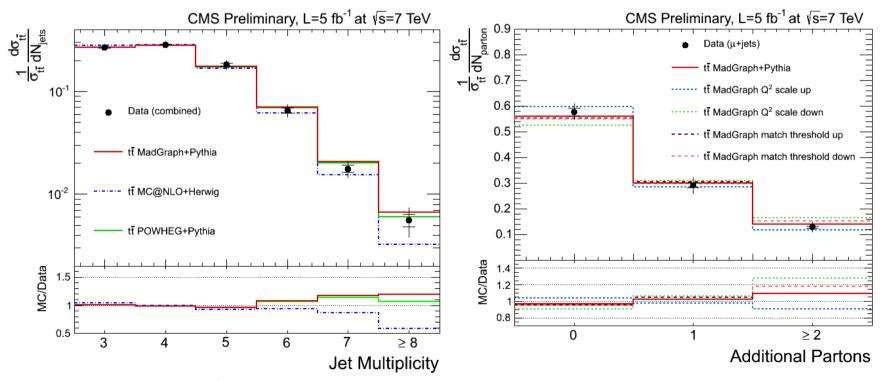
т + jets


μ + jets

Testing pQCD differential measurements

- Measurement of differential cross-sections
- $\boxed{\frac{1}{\sigma_{t\bar{t}}} \frac{d\sigma_{t\bar{t}}}{dX}}$
- Kinematics are reconstructed using different methods
 - after constrained fit (I+jets)
 - by prioritizing b-tagged jets and most probable neutrino energies for 100<m_r<300 GeV/c² (dilepton)</p>
 - → Unfold after background reconstruction kinematics of: single objects (leptons, jets), top quarks, top pair

Different generators yield fair description of the data in different channels Approx. NNLO computation yields best description of top kinematics



Testing pQCD from jet activity

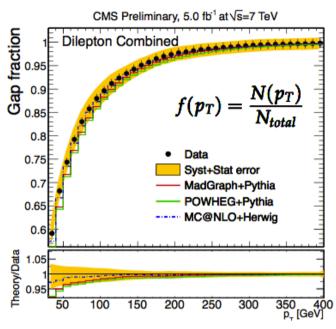
- How dependent is the signal modeling on pQCD parameters: Q², ME-PS matching, generator?
- Obtain pure distributions for tt
 - \rightarrow Fit the tt+N partons contributions from the reconstructed kinematics χ^2
 - or subtract the backgrounds to jet multiplicity distributions

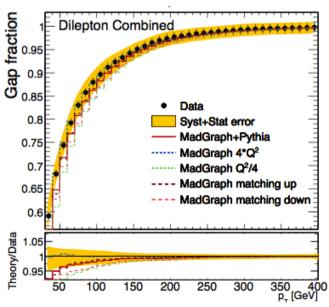
(unfolding is applied for the dilepton case – next slide)

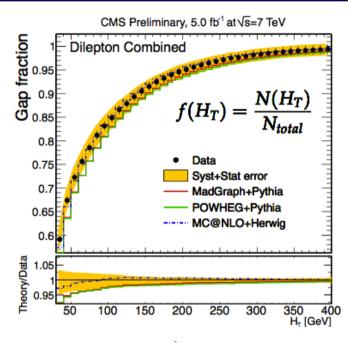
▲ Higher Q² tends to describe better multiplicity and gap fraction

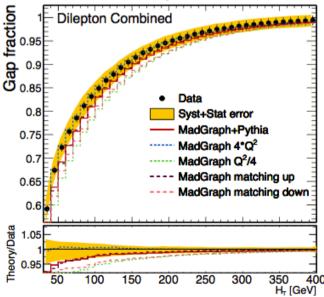
Unc.: 3%-20% (low → high mult.) dominated by jet energy scale / model params.

Madgraph/Powheg+Pythia describe better higher multiplicities rate observed in data

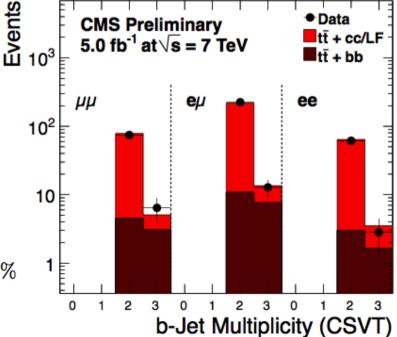

Gap fraction in dilepton events


Gap fractions vs different generators


 MC@NLO+Herwig better description of gap fractions but poorer description of high jet multiplicities


Gap fractions vs different Madgraph parameters

- Data tends to indicate prefence for higher Q²
- Educated guess for the variation of the parameters in CMS matching exp. uncertainties


Associated production with two b's

16/27

all-hadronic

- The ratio of tt+2 jets to tt+2 b jets is measured
 - ratio allows for cancellation of many uncertainties
 - 784 dilepton events with two jets and at least two b-tags are selected in data
 - cleaner environment to study heavy flavor content of top pair sample
- Main challenges:
 - Experimental side: how well do we know b-tag efficiency and rate for b's from gluon splitting? mistag rate for light?
 - Theory side: how important is npQCD? We have defined signal at particle level from jets with p_{τ} >20 GeV ΔR_{\parallel} >0.5
- Mistag rate for light flavours known to ~10% dominates final uncertainty

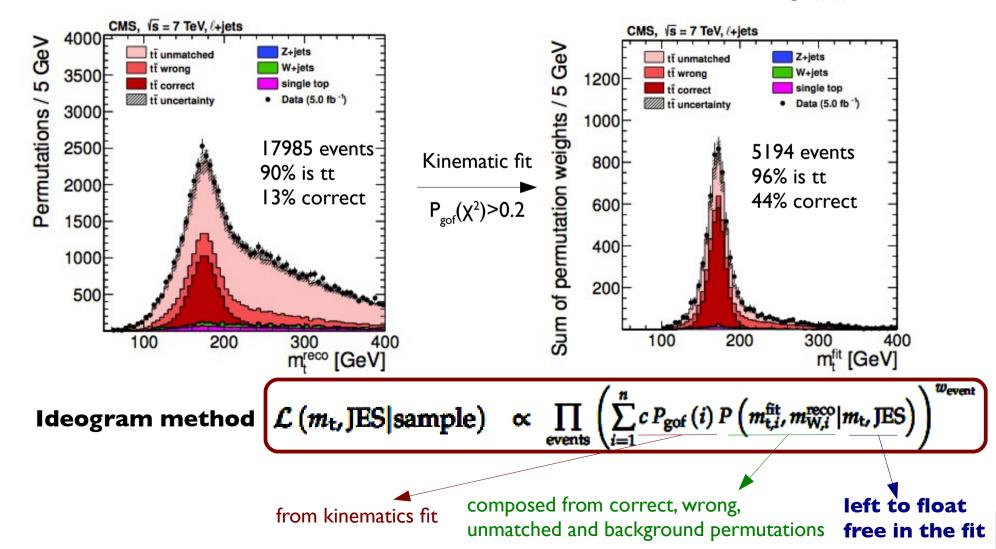
Source	$\sigma_{ m tar{t}bar{b}}/\sigma_{ m tar{t}jj}$ (%)			
bource	Medium b-tagging	Tight b-tagging		
Pileup	0.5	0.5		
Jet energy scale	3.0	2.0		
b-tag efficiency	6.0	4.0		
mistag efficiency	+23 -19	+18 -15		
MC generator	3.0	3.0		
$\mathbf{Q^2}$	6.0	6.0		
Total	+25 -21	+20 -17		

Results

$$rac{\sigma_{
m tar tbar b}}{\sigma_{
m tar tii}}(
m exp) = 3.6 \pm 1.1_{
m stat} \pm 0.9_{
m syst}\%$$

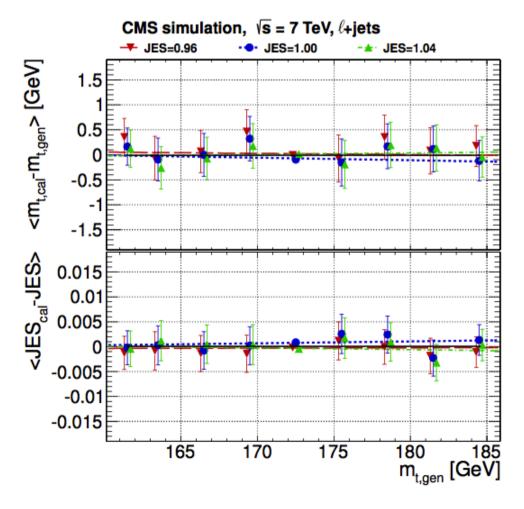
$$rac{\sigma_{
m tar{t}bar{b}}}{\sigma_{
m tar{t}jj}}|_{
m LO}^{
m Madgraph}=1.2\%$$

Top quark mass

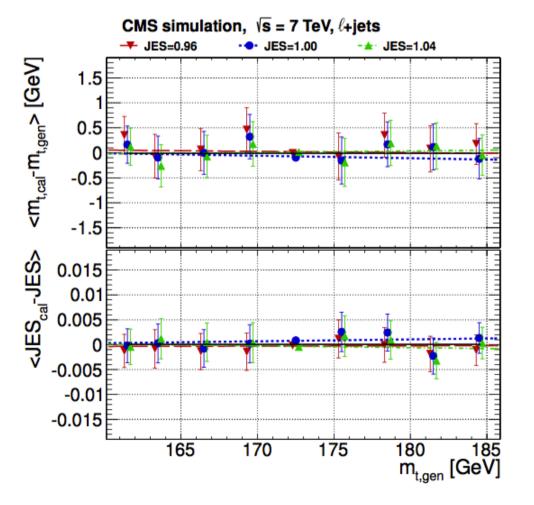

Measurements which build up on knowledge from our detector and top cross section studies.

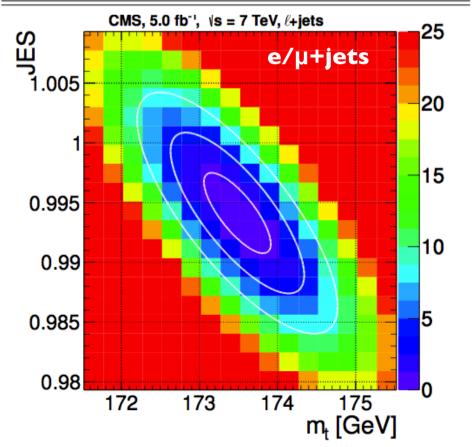
The importance of being top or anti-top: mass difference

Lepton+jets measurements


- In-situ calibration of the light quark JES from W→ qq' leg
- After requiring b-tag the purity of the events is very high
- Kinematics fitter is used to evaluate possible combinations \rightarrow assign weight $P_{gof}(\chi^2) = \exp(-\frac{1}{2}\chi^2)$

Calibration

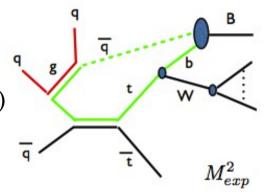

- Simulated pseudo-experiments are used:
 - → scan m_{top} and JES scenarios (27 points)
 - calibrate / assess the bias and coverage
 - → small corrections to nominal fit (<0.5 GeV)</p>


Calibration and results

- Simulated pseudo-experiments are used:
 - → scan m_{top} and JES scenarios (27 points)
 - calibrate / assess the bias and coverage
 - → small corrections to nominal fit (<0.5 GeV)</p>

- Calibration is used to correct the data fit:
 - result self-consistent between channels
 - nominal jet energy scale is validated in-situ

		stat. unc. only
Channel	$\mu{ m +jets}$	$e{+}\mathrm{jets}$
$m_{ m top}~({ m GeV})$	173.22 ± 0.56	173.72 ± 0.66
JES	0.999 ± 0.005	0.989 ± 0.005


Systematic uncertainties

Jet energy scale/resolution

- Light JES is calibrated in-situ but expect 2 b-jets in the final state → flavor uncertainty
- \rightarrow Residual p_T and η dependency to take into account deviations from flat JES fit from data
- Other instrumental effects: b-tagging, E_T^{miss} scale, pileup, lepton energy scale

Underlying event and colour reconnection

- Z2 is the default UE tune for CMS at 7 TeV
- Perugia2011 tunes are used for variations (direct comparison with ATLAS)
- CR is compared within Perugia2011 variations (100% variation)
- Note: tuning in the presence of ME-PS matching is a new field

Signal modeling

- Q² variation addresses two aspects
- renormalisation & factorisation scale uncertainties ME amount of initial- and final-state radiation ISR/FSR
- → ME-PS tuning: critical parameter for the contribution from soft and collinear showers (Pythia-based)
- → Hadronization related uncertainties are covered by Q² and jet energy scale variations
- Other theoretical uncertainties: PDF, background contribution

Note: final error is related to the m_{top} measured \rightarrow careful theoretical interpretation is needed

Results in lepton+jets

Systematic uncertainty	$\Delta m_{ m top}$ [GeV]
Calibration	0.06
<i>b</i> -JES	0.61
p_T - and η -dependent JES	0.28
Lepton energy scale	0.02
Missing transverse energy	0.06
Jet energy resolution	0.23
<i>b</i> -tagging	0.12
Pile-up	0.07
Non- $t\bar{t}$ background	0.13
PDF	0.07
μ_R,μ_F	0.24
ME-PS matching threshold	0.18
Underlying event	0.15
Color reconnections	0.54
Total	0.98

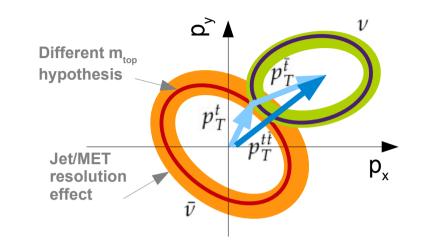
Results – best in lepton+jets

$$m_{\rm top} = 173.49 \pm 0.43_{\rm stat+JES} \pm 0.98_{\rm syst} \text{ GeV}$$

Dilepton mass measurement

- One degree of freedom in the 3D kinematics
 - → Up to 8 possible solutions per event ►
 - Use matrix weighting technique to weight solutions

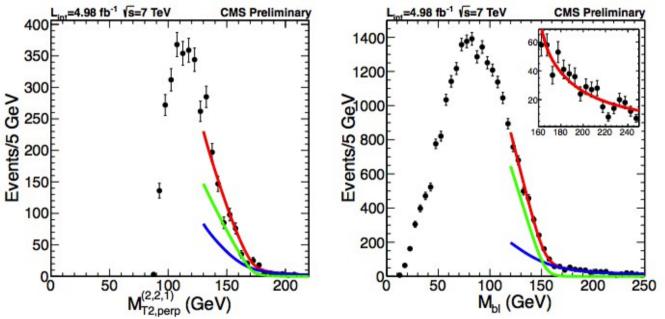

$$w = \{\sum f(x_1)f(x_2)\} p(E_{\ell^+}^*|m_t)p(E_{\ell^-}^*|m_t)$$


PDF summed over all possible combinations

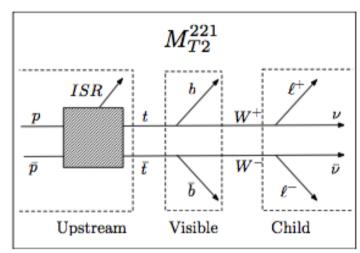
Probability to observed lepton in top rest frame

Result – best in dilepton channel

$$m_{\rm t} = 172.5 \pm 0.4 \, {\rm (stat.)} \pm 1.5 \, {\rm (syst.)} \, {\rm GeV}$$



Source	$\Delta m_{\rm t}$ (GeV)
Jet energy scale	+0.90 -0.97
b-jet energy scale	+0.76 -0.66
Jet energy resolution	±0.14
Lepton energy scale	± 0.14
Unclustered E _T ^{miss}	± 0.12
b-tagging efficiency	± 0.05
Mistag rate	± 0.08
Fit calibration	± 0.40
Background normalization	± 0.05
Matching scale	± 0.19
Renormalisation and factorisation scale	± 0.55
Pileup	± 0.11
PDFs	± 0.09
Underlying event	± 0.26
Colour reconnection	± 0.13
Monte Carlo generator	± 0.04
Total	±1.48



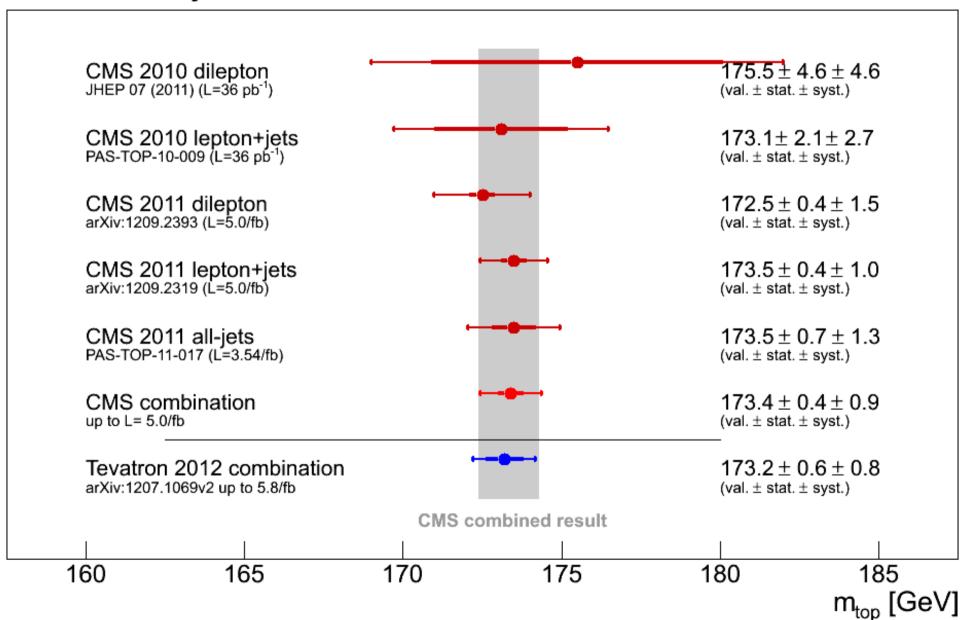
m_{top} from kinematic endpoints

- Top dilepton events resemble kinematics and topology of many new physics scenario
- Explore variables:
 - suited to analyze events with symmetric 3 body decays [HEP 0903 (2009) 143, PRL 107 (2011) 061801
 - which factorize event-by-event boost of the tt system >

0 50 M	100 150 200 (2,2,1) T2,perp (GeV)	00 50	100 150 200 250 M _{bl} (GeV)
		Constrair	nt
Fit Quantity	None	$m_{\nu}=0$	$m_{\nu}=0$ and $M_{W}=80.4$
m_{ν}^2 (GeV ²)	$-556 \pm 473 \pm 600$	(0)	(0)
M _W (GeV)	72±7±9	$80.7 \pm 1.1 \pm 1$	(80.4)
M _t (GeV)	$163 \pm 10 \pm 11$	$174.0 \pm 0.9 \pm 2$	$173.9 \pm 0.9^{+1.2}$

■ Simultaneous fit of the endpoints

Different systematics with respect to canonical" top mass measurements!

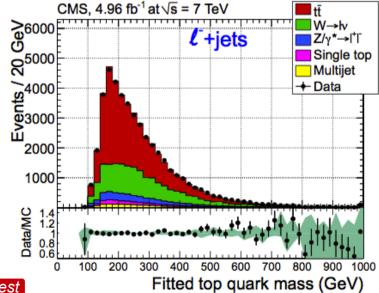

Source	$\Delta m_{ m top}(GeV)$		
Jet energy scale	+0.5 -1.4		
Jet energy resolution	0.5		
Fit range	0.6		
Background	0.5		
Efficiency	+0.1 -0.2		
Color reconnection	0.6		

Result

Top mass combination

CMS Preliminary





Top mass difference

- Test CPT invariance in the top sector
- Compare e⁻/µ⁺+jets vs e⁻/µ⁻+jets samples
- Mass reconstructed from hadronic side
 - Use kinematic fit (including resolutions)
 - Choose combination with lowest χ^2
- Final measurement from ideogram method (combine μ⁻ and μ⁺ likelihoods separately)
- Most systematic effects cancel out
 - measurement is stat. limited

	_
Source	Estimated effect (GeV)
Jet energy scale	0.04 ± 0.08
Jet energy resolution	0.04 ± 0.06
b vs. b jet response	0.10 ± 0.10
Signal fraction	0.02 ± 0.01
Difference in W ⁺ /W ⁻ production	0.014 ± 0.002
Background composition	0.09 ± 0.07
Pileup	0.10 ± 0.05
b-tagging efficiency	0.03 ± 0.02
b vs. b tagging efficiency	0.08 ± 0.03
Method calibration	0.11 ± 0.14
Parton distribution functions	0.088
Total	0.27

Results - world's best

 $\Delta m_{\rm t} = -0.44 \pm 0.46 \text{ (stat.)} \pm 0.27 \text{ (syst.)} \text{ GeV}$

Conclusions

- >4x10⁶ top pairs collected: great times for top quark physics at the LHC
 - → Potential to provide precision inputs to QCD (PDF, α_s ,...)

Searches (couplings, top partners, ...) see M. Tosi @ Searches

- Focused on precision measurements: production cross section and mass
 - Precision built on excellent detector performance

careful choice of signal modeling and validation from data combination of different, complementary methods

- Measurements overall consistent with the SM predictions call for next round of theory predictions
- Full collection of public results from CMS @
 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP

Backup

The LHC has already delivered us > 106 top quarks – what have we been learning?

Top pair production: consistent with QCD prediction? Jet scaling pattern? Associated productions?

Resonant production? Spin correlations?

Production after decay cascade?

Differential measurement of the charge asymmetry?

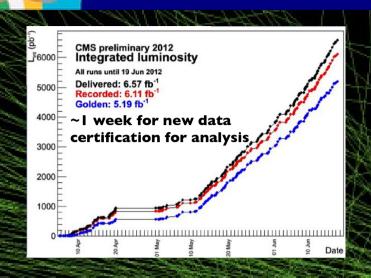
Single top production: V_{ta} , W', H^{+}

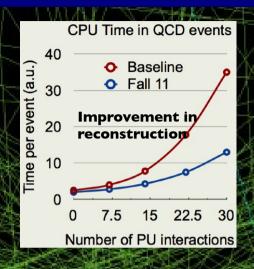
t

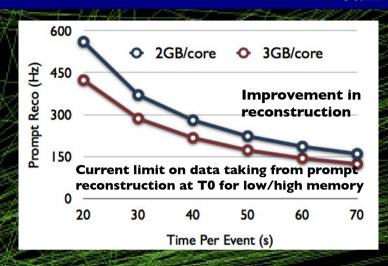
 W^+

 $|SV_{th}=|$?

Anomalous couplings in Wtb vertex? Rare decays by FCNC to γq , qZ, qg? $t \rightarrow H^+b$?

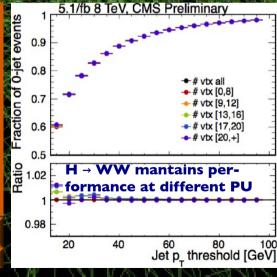

Can we improve the current precision on the mass? $m_{top} = m_{anti-top}$? (CPT invariance)

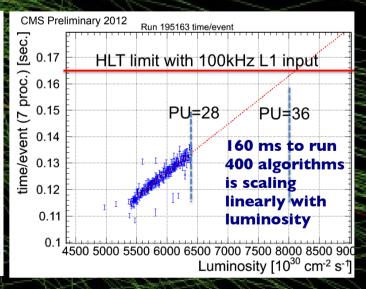

Privileged role in EWSB breaking mechanism ($\lambda_t \sim I$)?

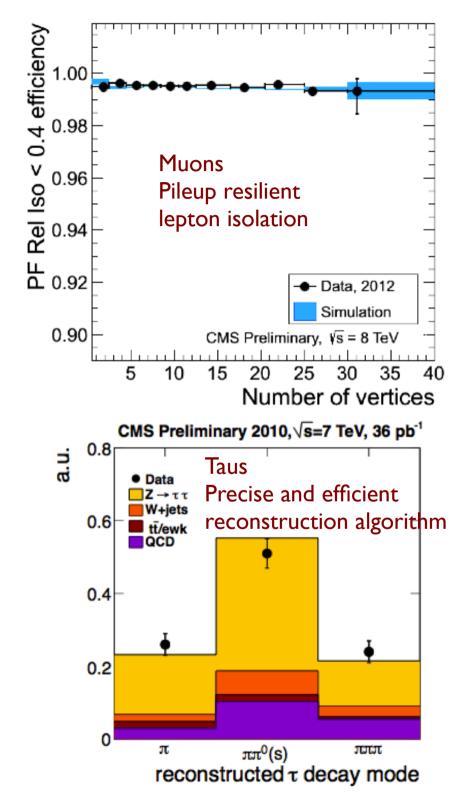

Is the charge of the decay products compatible with 2/3e? Is the width of the prompt decay compatible with $\Gamma_t \sim 1.3$ GeV?

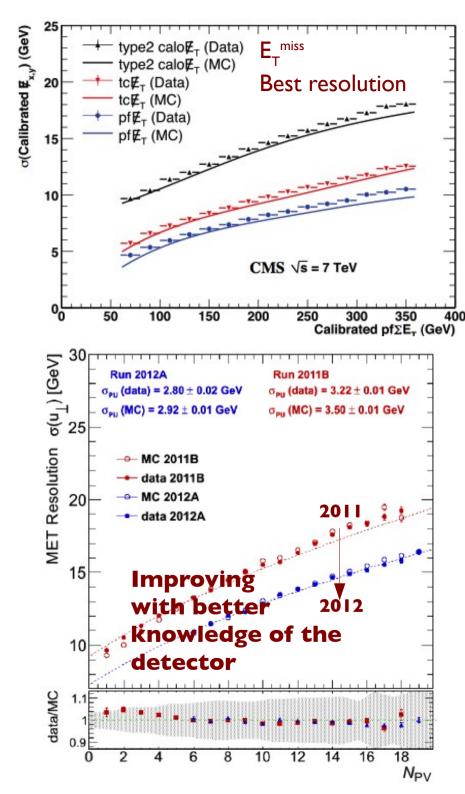
Many unknowns: unique sample for precision measurements and exploration of deviations from the SM at the LHC.

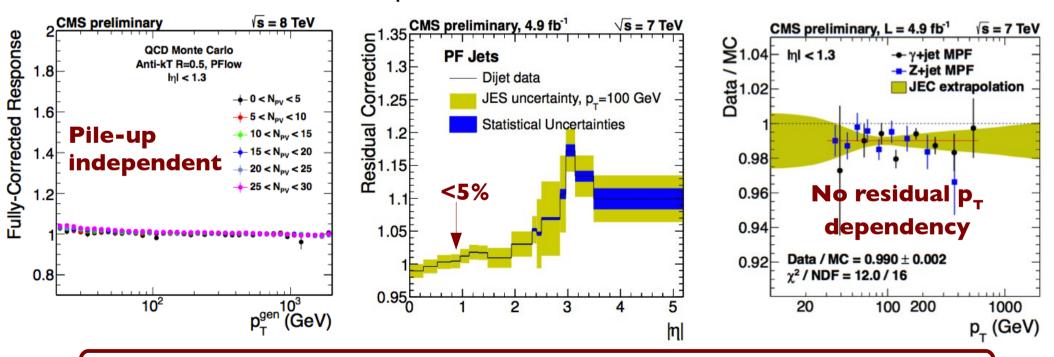
The pileup challenge



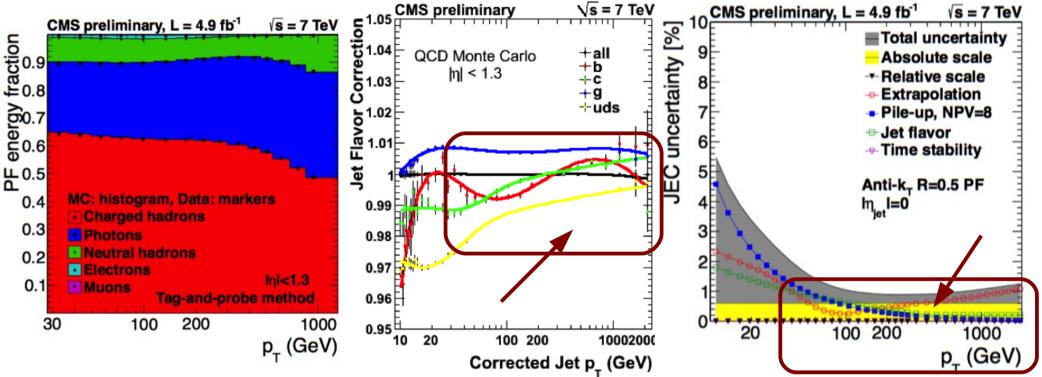




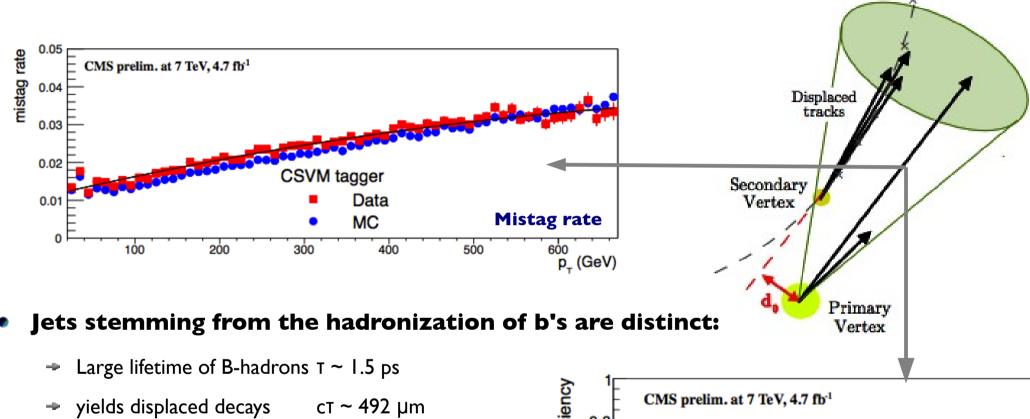

78 vertices in a single event!

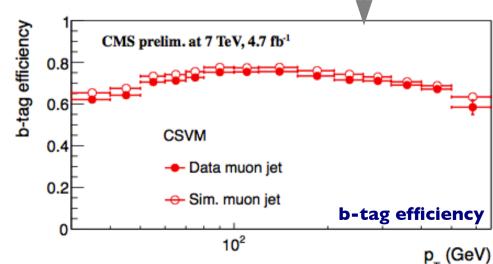


Jet calibration at CMS - I

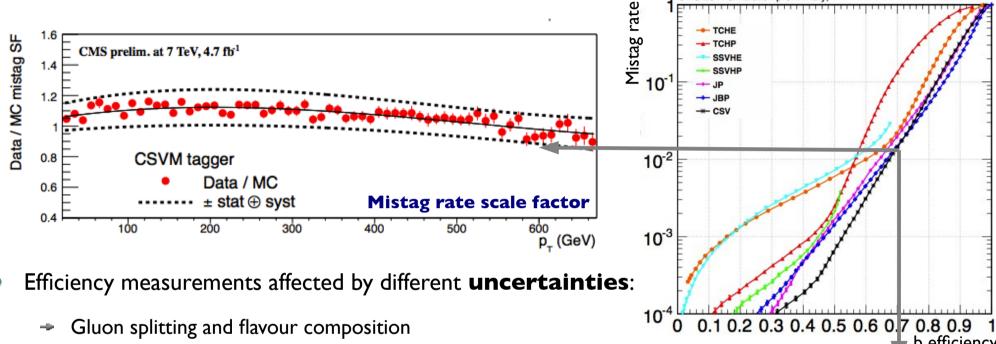

- Factorized approach for jet calibration in CMS
 - Offset corrections for pile-up and electronic noise
 - Charged hadron candidates associated to secondary vertices are subtracted
 - Corrections for detector calibration and reconstruction efficiencies (MC-based)
 - relative residual η dependency corrections (data-based)
 - → absolute and residual p₊ corrections (data-based)

Achieve <2% uncertainty on energy scale and ~10% on energy resolution

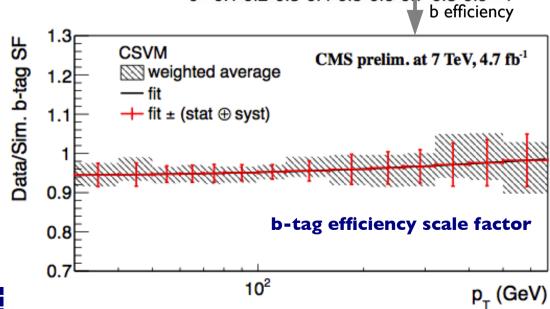

Jet calibration at CMS - II


- Contribution of particle flow jet components to jet energy is understood to within <1%
- Flavor specific differences within I-3% of the averaged correction
 - → b-jet response is within 1% for p₊>15 GeV
 - pure flavor modeling within 1.5% comparing Pythia6 vs Herwig++
- We factorize 16 independent sources of jet energy scale uncertainty correlations
 - key feature: sources may cross 0 and produce anti-correlations
 - \bullet e.g. extrapolation includes fragmentation (correlated) and π response (anti-correlated) components

b-jet identification - I



- → massive secondary vertices M_{secVtx} ~ 3 GeV (M_B~5 GeV)
- → may contain soft leptons BR(B→Iv_i+X) ~ 20%
- Identification algorithms characterized by efficiency and mistag rate (probability to mis-identify c- or light flavoured-jets)


b-jet identification - II

- Jet trigger and offline selection
- Template shapes, pileup, etc.

Combine alternative measurements

- Different sensitivity to different systematics
- 2-4% uncertainty on b-tagging efficiency
- 9-11% uncertainty on mistag rate

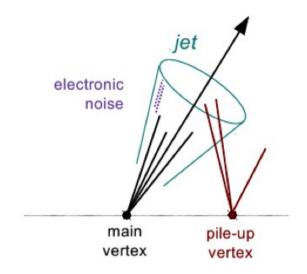
CMS 2011 simulation preliminary, \(\s = 7 \) TeV

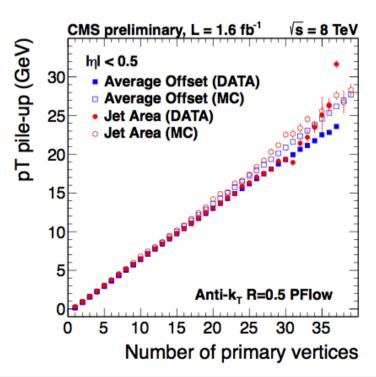
Uncertainty on luminosity

- Luminosity measurement is based on pixel cluster counting
 - Use Van der Meer scan to measure $\sigma_{pixel} = \langle N_{cluster} \rangle f \left(\frac{dL}{dt}\right)^{-1}$ mean number of pixel clusters per zerobias trigger at the beak of the scan
- At 7 TeV attain a total uncertainty of 2.2%
- At 8 TeV increased uncertainty to 4.4%
 - Observe larger scan-to-scan variations in the cross section
 - Work in progress to understand variation
 - Assign larger variation (3.7%) as systematic uncertainty

		CMS preliminary 2012	Ŧ			
		VdM scan, LHC fill 2520	+			
	6.15	. т				
n		=				
•		T †	+	.	•	BX = 1
	6.10	·	†	1		BX = 721
	$\sigma_{ m pixel}\left(b ight)$	1 1	†	٠		BX = 1441
	Ppixe	→ • • • • • • • • • • • • • • • • • • •		.		BX = 2161
	6.05	. ‡	†	4	•	BX = 2241
		★ ±	±	.	*	BX = all
		İ ‡				
	C 00	Ţ				
	6.00	·		- 1		
or	1	†				
		1				
	5.95	-0 -0 -0 -0	0 -0 -0 -0	ш		
	18:20:00	8:35:00 18:50:00 19:05:00 18:20:00 19:35:0	79:20:00 00:02:00 00:30:00 00:32:00			
	,- '		time			

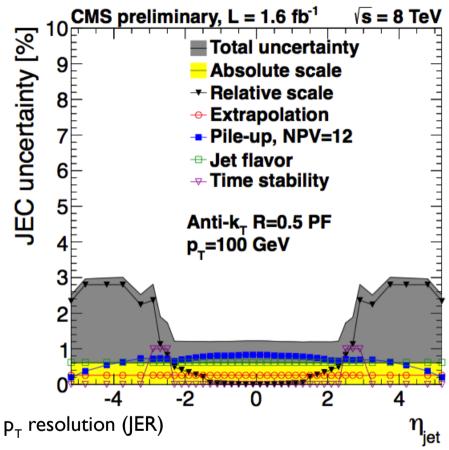
7 TeV	
Source	Uncertainty (%)
Stability across pixel detector regions	0.3
Pixel gains and pedestals	0.5
Dynamic inefficiencies	0.4
Length-scale correction	0.5
Beam width evolution	0.6
Beam intensity - DCCT	0.3
Beam intensity - FBCT	0.5
Beam intensity - Ghosts	0.2
Scan-to-scan variations	1.5
Afterglow	1.0
Total	2.2


8 TeV


Source	Uncertainty (%)
Stability across pixel detector regions	1.5
Length-scale correction	0.3
Beam intensity - DCCT	0.3
Beam intensity - FBCT	0.5
Beam intensity - Ghosts	0.1
Beam intensity - Satellites	0.2
Dynamic β* effects	0.5
Scan-to-scan variations	4.0
Afterglow	0.4
Total	4.4

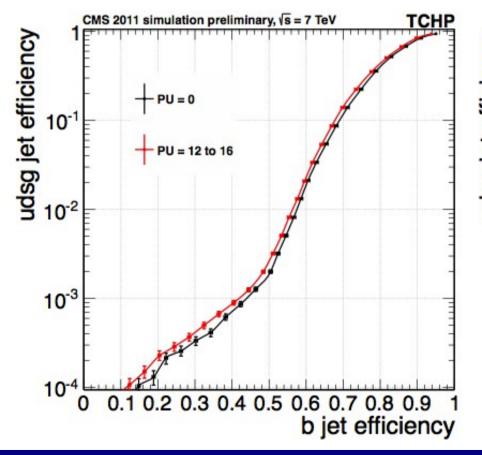
Pileup corrections for jets

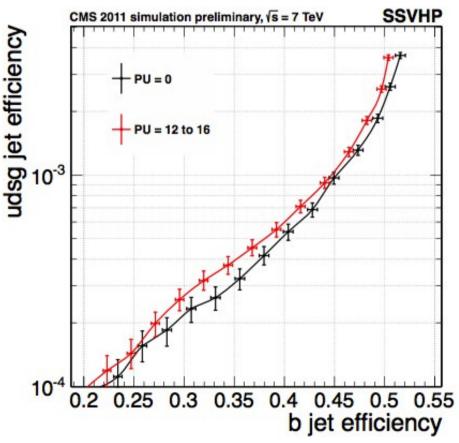
- Corrections are based on two methods:
 - Average offset based on the multiplicity of primary vertices
 - Jet area based on average energy density - ρ - computed with FastJet (Cacciari and Salam, PLB659:119-126,2008)
 - Average offset corrections correctly reproduced by jet area method (as well as η dependency on data)
- Linear dependency as function of pileup (with small quadratic dependency for MC)
- Charged hadron subtraction is possible using primary vertex association
 - improve resilience against PU
 - expect to achieve best resolution



Jet energy scale uncertainty components

Jet energy scale uncertainties include:


- Absolute : absolute scale uncertainty derived from Z/γ+jets
- → High p_T: extrapolation based on Pythia6 Z2/Herwig++2.3 differences in fragmentation and UE
- Single Pion : high p_⊤ extrapolation after
 ±3% variation in single particle response
- → Flavor: jet flavor based on Pythia6 Z2/Herwig++2.3 differences in quark and gluon responses relative to QCD mixture
- **Time**: JEC time dependence.
- Relative JER : η-dependence uncertainty from jet p_T resolution (JER)
- Relative FSR :η-dependence uncertainty due to correction for FSR.
- **Relative Stat**: statistical uncertainty in determination of η -dependence.
- → **Pile Up**: uncertainties for pile-up corrections include data/MC differences in Zero Bias data, out of time residuals, offset on jet pT due to zero suppresion, observed evolution of jet rate with vertex multiplicity



b-tagging and pileup

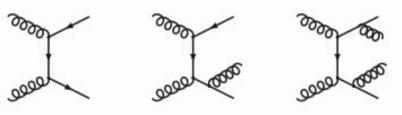
- Small dependency on pileup for the performance of the algorithms used by top (example of the IP-based algorithm used by single top analysis is given in the left figure)
- Larger dependency observed for very high purity algorithms (example of SecVtx-based algorithm is given in the right figure)

b-tagging algorithms at CMS

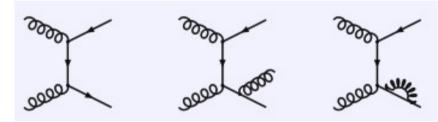
At CMS b-tagging algorithms can be based on:

impact parameter **Secondary vertex reconstruction** CMS 2011 preliminary, \(\overline{18} = 7 \text{ TeV} \quad 4.7fb' \) CMS 2011 preliminary, $\sqrt{s} = 7 \text{ TeV}$ b from gluon splittir entries b from gluon splitting c quark uds quark or gluon Track Counting: uses 3rd 10⁴ track with highest IP significance CMS 2011 preliminary, \(\sigma = 7 \text{ TeV} \quad 4.7 fb^{-1} 10³ 10² 3D flight significant **TCHP** discriminator SV mass [GeV/c2] CMS 2011 preliminary, $\sqrt{s} = 7 \text{ TeV}$ CMS 2011 preliminary, √s = 7 TeV entries b from gluon splitting entries b from gluon splitting uds quark or gluon uds quark or gluon **Jet probability:** how Combined SecVtx: multivariate probable that a jet was discriminator using both SecVtx and produced from the PV? lifetime information 10² Data/MC Data/MC CSV discriminator 0.5 JP discriminator

Generator setups for top physics at CMS


41/27

Matrix Element + Parton shower generators


- Better description of high multiplicities
- ISR/FSR modeling tuned from assumed Q²
- → PS
- e.g. Madgraph+Pythia

Next Leading Order

- More accurate in normalization
- Smaller uncertainty on the Q²
- → e.g. MC@NLO+Herwig

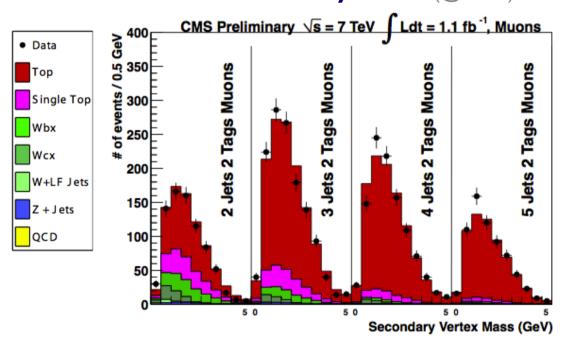
tree level diagrams with up to 3 partons

real+virtual corrections

process	ME	PS	method	PDF	Tune
$t\bar{t} + jets$	MadGraph v5.x	Pythia v6.42x	ME+PS	CTEQ6L1	Z2(*)
tŧ	POWHEG-box 1.0	Pythia v6.42x	NLO	CTEQ6M	Z2(*)
tŧ	MC@NLO v3.41	Herwig v6.520	NLO	CTEQ6M	

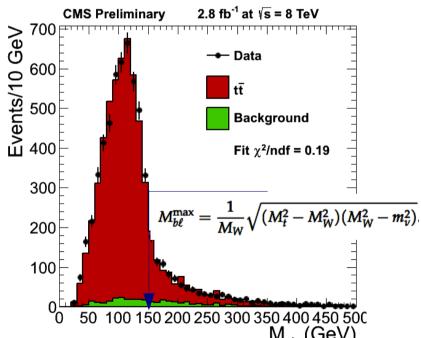
P. Silva DISCRETE 2012

Lepton+jets analysis


Main backgrounds:

- \rightarrow QCD multijets (rejected with m_T/MET, can be controlled from sidebands)
- → W+jets (in particular Heavy Flavor, controlled by categorizing or kinematics)

Use b-driven kinematics to discriminate top:


mass of secondary vertex (@7 TeV)

• Categorize events and fit σ_{tt}

- → W+HF normalization included in fit
- Systematics treated as nuisance
 parameters (e.g. Q², b-tag efficiency)

lepton-b invariant mass (@8 TeV)

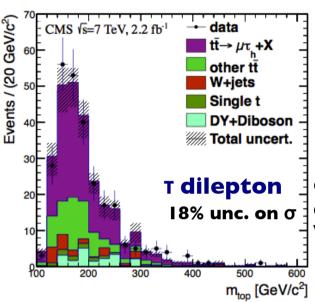
Reconstruct kinematics from χ^2 fit

- Assign leptonic top decay
- Binned fit M_{Ib} distribution
 (data-driven templates for QCD)

Uncertainties in lepton+jets

ılts	7 TeV				TeV					
Results	$164.4~\pm~2.8_{\rm stat}~\pm$	$11.9_{\mathrm{syst}} \pm$	$7.4_{ m lumi}$ $ m I$	pb 22	$28.4 \pm$	$9.0_{ m stat}$	$^{+29.0}_{-26.0}$ syst	\pm	$10_{ m lumi}$	$\mathbf{p}\mathbf{b}$
	9%						13%			

- Detector related uncertainties
 jet energy scale/resolution, b-tag
 trigger/selection eff.
- **Signal related uncertainties** Q², ME-PS matching
 - → reflect directly on top decay products kinematics (M_{Ib}) e.g through modification of the environment (ISR/FSR)
 - factorize from simple b properties (vertex mass)
- Results are cross-checked and consistent with alternative measurements

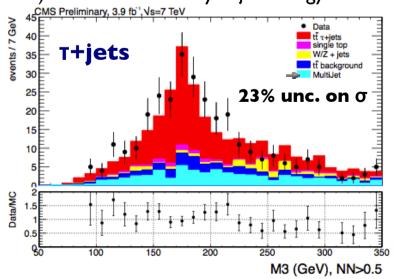

Source	$\Delta\sigma_{ m tar t}$ (%) from			
Source	$M_{ m SecVtx}$ (7 TeV)	$M_{\ell,\mathrm{b}}~(8~\mathrm{TeV})$		
Background composition	-	0.1		
Multijet normalization	-	0.9		
W+jets Q ² /template	2 [†]	0.9		
Trigger efficiency	3.4	+3.2 -2.8		
Lepton selection	3.4	+2.8 -2.4		
Jet energy scale	3.1†	+4.3 -5.0		
Jet energy resolution	3.1	+0.5 -1.1		
$E_{ m T}^{ m miss}$	<1	-		
b-tagging	2.4^{\dagger}	8.0		
Pileup	2.6	0.7		
\mathbb{Q}^2	2	+6.2 -2.1		
ISR/FSR	2	-		
ME-PS scale	2	+4.6 -3.1		
PDF	3.4	+1.6 -2.0		
Top mass	-	+0.3 -1.4		
Total	7.3	+12.7 -11.4		

Challenging channels

Phys. Rev. D85 (2012) 112007 CMS PAS TOP-11-004 CMS PAS TOP-11-005

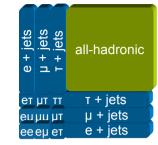
44/27

3rd generation only

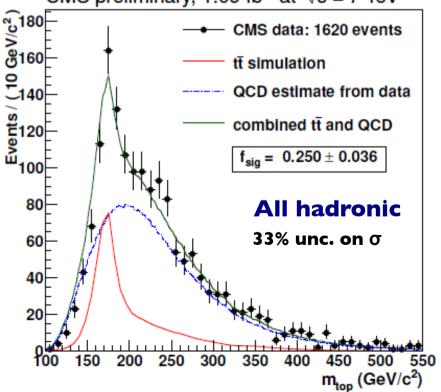


Store all-hadronic

et ht the property of the


■ Main uncertainty due to T fake rate estimated from W+jets sample

Multivariate analysis (fakes modeled from 0 b-tags sideband) → main uncertainty is jet energy scale ▼


Fully hadronic

kinematic fit sorts combination
 which reconstruct m_{rop}

- Multijets re-weighted from 0 b-tags control region
- Uncertainties: instrumental/background are dominant over other contributions

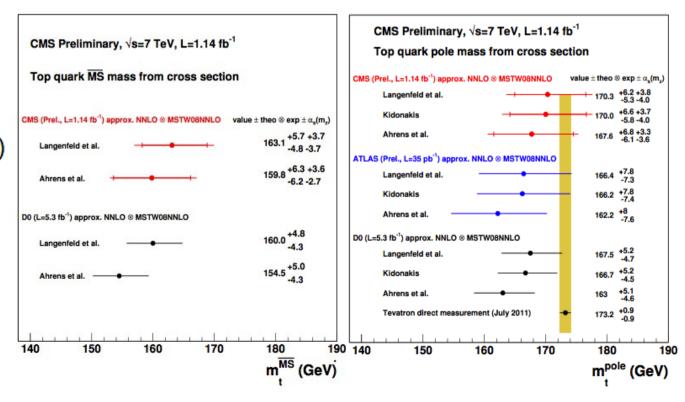
CMS preliminary, 1.09 fb⁻¹ at $\sqrt{s} = 7$ TeV

...and current word from CMS- σ_{tt} on

45/27

Coupling of strong interactions

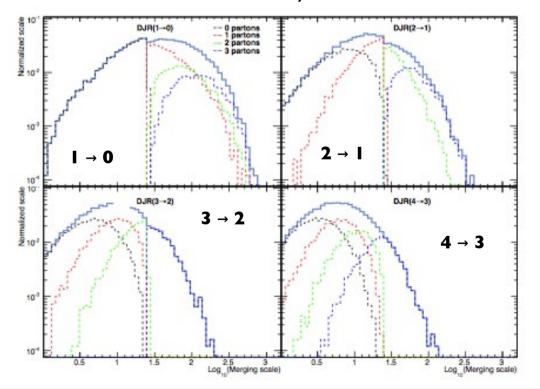
Top quark mass

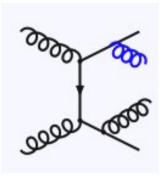

 m_{top} and α_s can't be determined simultaneously from $\sigma_{tt} \rightarrow constrain$ one when measuring the other

$$\mathcal{L}(x) = \int d\sigma \ f_{ ext{exp}}(\sigma_{tar{t}}|x) \ f_{ ext{th}}(\sigma_{tar{t}}|x) \ x = lpha_{ ext{S}} \ ext{or} \ m_{ ext{t}}$$
 Experimental measurement (gaussian)

Parametrize measured and predicted dependency on m_{top}:

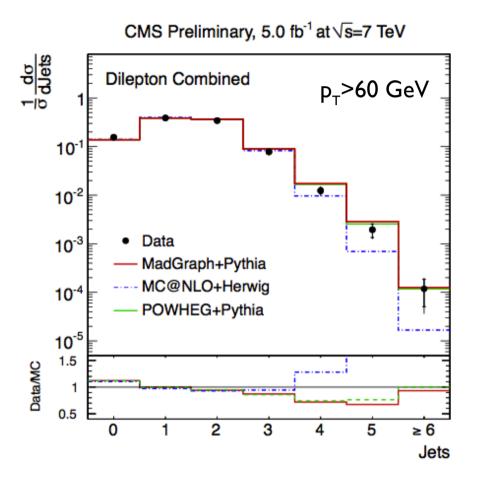
$$\sigma_{t\bar{t}}(m_t) = \frac{1}{m_t^4} \left(a + b \cdot m_t + c \cdot m_t^2 + d \cdot m_t^3 \right)$$

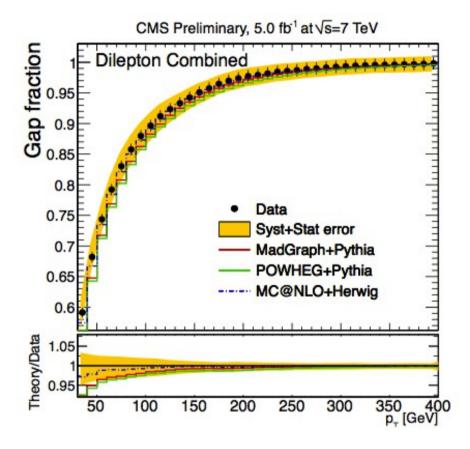

 Uncertainties: experimental measurement, PDF, Q² scale, α_ε



More on the Q² and ME-PS parameters and choices

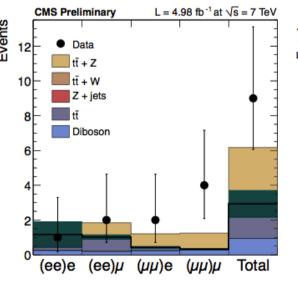
- Parton showering (e.g. Pythia) describes the soft and collinear region
 - → ME-PS matching is done via k₊MLM
 - ensure smoothness of N → N+1 jet rates
 - matching thresholds (xqcut=20) drives optimal scale (qcut=40)
 - → Choice is varied by factors of 2 or ½

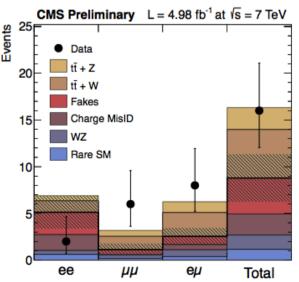

• For each event the Q^2 is defined as:

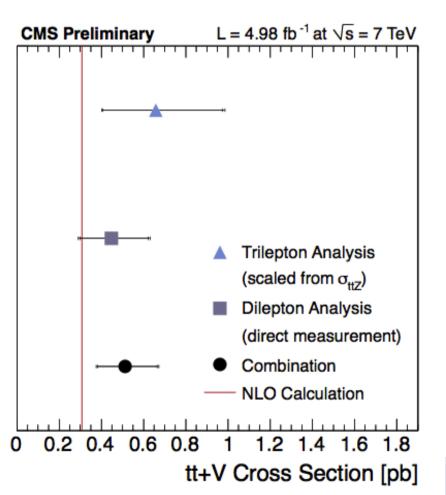

$$Q^2 = m_{
m top}^2 + \sum_{
m partons} p_{
m T}^2$$

- Alternative settings vary by 4Q² and ¹/₄Q²
- Parton showering:
 - \rightarrow α_s -based evolution scale of ISR/FSR
 - \rightarrow shares Q² factor α_s scale with ME
 - implicitly: starting scale changes with ΔQ^2
- Note: scales in different processes are varied independently (tt, single top, W/Z+jets, etc.)

Modeling jet activity in dilepton events


- Best agreement is observed for generators interfaced with Pythia (Madgraph, Powheg)
- MC@NLO+Herwig describes better the jet gap fraction due to the fact that it fails to reproduce correctly events with emission of several hard jets
- Distributions are overall better described with Madgraph with increased Q² (see slide 27)

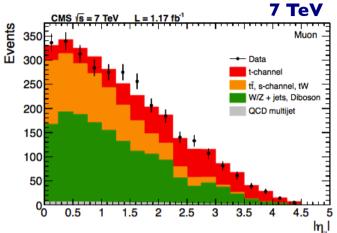


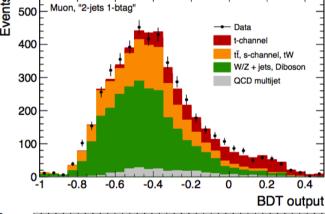

Associated production with bosons

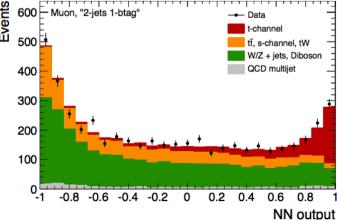
- Search is carried in two different channels
 - **Trilepton:** Z → II + I at least 3 jets (2 b-tagged), $H_T > 120$ GeV
 - **Same sign dilepton:** $l^{\pm}l^{\pm}$ with high p_{τ} , at least 3 jets (2 b-tagged) HT>100 GeV
- Dominant systematic uncertainties due to background estimation

$$\begin{split} \sigma_{t\bar{t}V} &= 0.51 \stackrel{+0.15}{_{-0.13}} _{\rm stat} \stackrel{+0.05}{_{-0.04}} _{\rm syst} \ \ pb \ \ {}^{4.67\sigma \, significance} \\ \sigma_{t\bar{t}Z} &= 0.28 \stackrel{+0.14}{_{-0.12}} _{\rm stat} \pm 0.04_{\rm syst} \ \ pb \ \ {}^{3.66\sigma \, significance} \\ \sigma_{t\bar{t}W} &= 0.30 \stackrel{+0.14}{_{-0.11}} _{\rm stat} \stackrel{+0.04}{_{-0.02}} _{\rm syst} \ \ pb \ {}^{2.44\sigma \, significance} \end{split}$$

Single top: t-channel


Dominant production channel


- I central, isolated lepton + E_t^{miss}
- ⇒ expect $N(I^+) \approx 1.9 N(I^-)$, i.e. $N(t) \approx 1.9 N(anti-t)$
- → Main signal contribution in **I b jet+I forward recoil jet -** |η|<4.5 (analysis may use however N_{iets} , N_{tags} categories)


Main backgrounds:

- ▼ Top pair production: assumed from simulation
- → W+jets: fit from the discriminator output or re-scaled from selection sideband (e.g. failing m_{lvb} requirement)
- → **Multijets**: fit to E_T^{miss}, or m_T spectrum with template from lepton selection side-band
- Measurement stems from <u>2 approaches</u>:
 - fit to angular variable η_i robust approach (7 and 8 TeV)
 - multivariate analysis (neural network and boosted decision tree) exploiting fully signal topology and maximizing significance (7 TeV only)

Combine individual to produce the final measurement

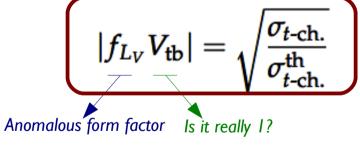
Results and V_{tb} extraction

Results

7 TeV

 $67.2 \pm 3.7_{ ext{stat}} \pm 3.0_{ ext{syst}} \pm 3.5_{ ext{theor}} \pm 1.5_{ ext{lum}} ext{ pb}$

$$80.1 \pm 5.7_{\rm stat} \pm 11.0_{\rm syst} \pm 4.0_{\rm lum} \text{ pb}$$


$$R_{8/7} = 1.14 \pm 0.12_{\rm stat} \pm 0.14_{\rm syst}^*$$

Notes: * - $R_{8/7}$ using the η_i based cross section only

Main uncertainties

- Experimental/background uncertainties: W+jets background, b-tagging
- Theoretical inputs for signal modeling as well as Q² for W+jets and top pairs

V_{th} is (≈) the signal strength

or
$$|V_{\mathrm{tb}}| = \sqrt{\frac{\sigma_{\mathrm{tW}}}{\sigma_{\mathrm{tW}}^{\mathrm{th}}}}$$

Results

t-channel, 7 TeV best from single top

$$1.020 \pm 0.046_{\mathrm{exp}} \pm 0.017_{th}$$

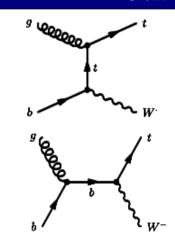
$$|V_{\rm tb}| > 0.92 \ @ 95\%{
m CL}$$

t-channel, 8 TeV

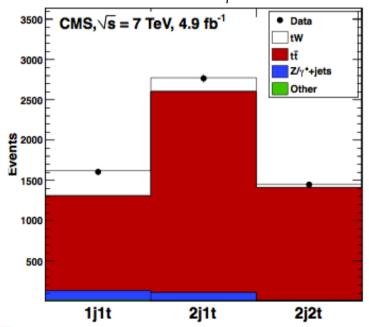
$$0.96 \pm 0.08_{\mathrm{exp}} \pm 0.02_{th}$$

$$|V_{\rm tb}| > 0.81 @ 95\%{\rm CL}$$

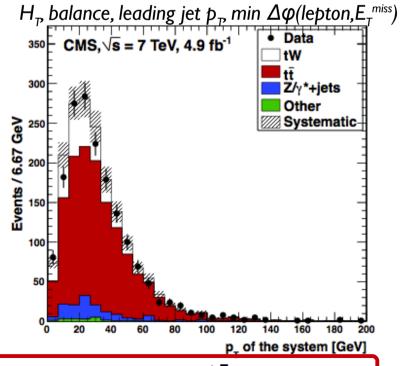
tW-channel, 7TeV


$$1.01 \, ^{+0.16}_{-0.13} \, ^{+0.03}_{\mathrm{exp}} \, ^{+0.03}_{-0.04} \, ^{\mathrm{th}}$$

$$|V_{\rm tb}| > 0.79 \ @ 90\%{\rm CL}$$



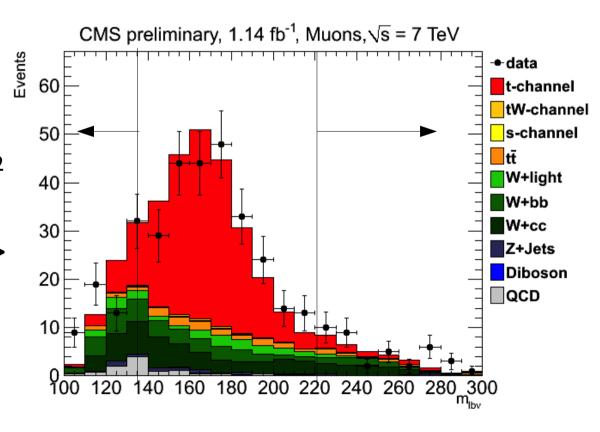
Single top: tW-channel


- Final state: 2 leptons+I b-jet+E_T^{miss}
- At LO similar to top pair event with dilepton and only I b-jet in final state
 - 2nd b-jet veto is applied for signal region
 - **Balance** (p_T of the system): $\sum_{\text{leptons}} \vec{p}_{\text{T}} + \vec{p}_{\text{T}}^{\text{b-jet}} + \vec{p}_{\text{T}}^{\text{miss}}$
- Categorize events according to number of jets and b-tagging multiplicity

Compare fit from cut and count
 Cut and count events with H₇>60 GeV

to fit to **multivariate discriminator**

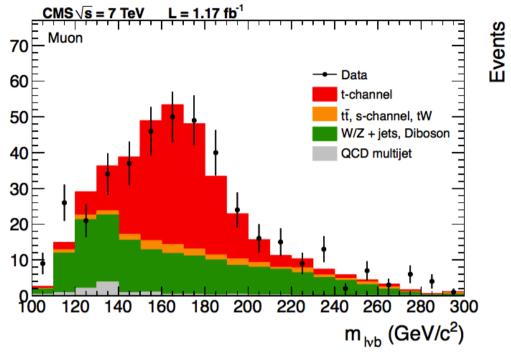
Cut and count 3.2σ significance $15\pm5\,\mathrm{pb}$

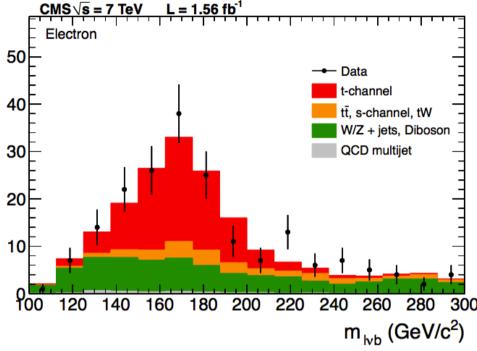

BDT 4σ significance 16^{+5}_{-4} pb

Background control for t-channel

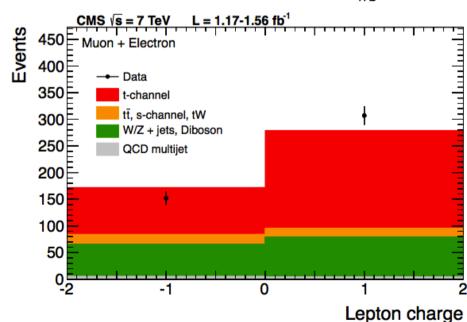
52/27

- **QCD multijets** is controlled in the 2 jet 1 tag sample after fitting the low M_T region for the muon channel (low E_T^{miss} region for the electron channel)
- Check shape and normalization of $|\eta_i|$ and m_{lvb} in 2 control regions:
 - 2 jets 0 tags: W+light
 - 3 jets 2 tags: **Ttbar**
- W+ jets cross-checks
 - From EWK/Ttbar cross section measurement it is expected to be 1.2 (W+b) / 1.7x (W+c) larger with respect to MC prediction
 - Control |η_i | in the m_{Iνb} sidebands ►
 - Subtract TTbar, single top-s, -tW and dibosons from prediction
 - Derive the template for the W+heavy flavor contribution to be fit in the signal region





Further control distributions for single top t-channel


53/27

- Distributions obtained in the signal region
 - Using result of the fit to η_i
 - For $|\eta_{j}| > 2.8$

Results for the t-channel

Results

$$67.2 \pm 3.7_{
m stat} \pm 3.0_{
m syst}$$
 7 TeV $\pm 3.5_{
m theor} \pm 1.5_{
m lum} ~
m pb$

$$80.1 \pm 5.7_{
m stat} \pm 11.0_{
m syst}$$
 8 7eV $\pm 4.0_{
m lum}~{
m pb}$

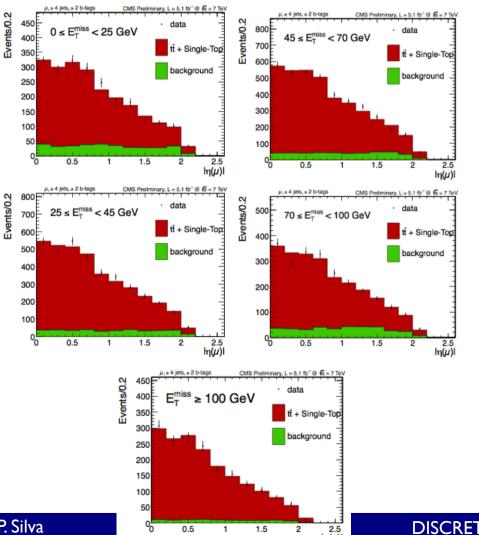
$$R_{8/7} = 1.14 \pm 0.12_{\rm stat} \pm 0.14_{\rm syst}^{*}$$

Main uncertainties

- Experimental/background uncertainties: W+jets background, b-tagging
- Theoretical inputs for signal modeling as well as Q² for W+jets and top pairs

Uncertainty source **		NN	NN BDT			
	ئد	Statistical	-6.1/+5.5%	-4.7/+5.4%	±8.5%	
	퉏	Limited MC data	-1.7/+2.3%	$\pm 3.1\%$	$\pm 0.9\%$	
	Experimental uncert.	Jet energy scale	-0.3/+1.9%	±0.6%	-3.9/+4.1%	
2		Jet energy resolution	-0.3/+0.6%	±0.1%	-0.7/+1.2%	
Marginalised (NN, BDT		b tagging	-2.7/+3.1%	±1.6%	±3.1%	
I, B	ĬĬ.	Muon trigger + reco.	-2.2/+2.3%	±1.9%	-1.5/+1.7%	
Z	Ē	Electron trigger + reco.	-0.6/+0.7%	$\pm 1.2\%$	-0.8/+0.9%	
g (1	찷	Hadronic trigger	-1.3/+1.2%	$\pm 1.5\%$	$\pm 3.0\%$	
sec	_	Pileup	-1.0/+0.9%	$\pm 0.4\%$	-0.3/+0.2%	
iali		 # _T modelling	-0.0/+0. 2 %	$\pm 0.2\%$	$\pm 0.5\%$	
gir		W+jets	-2.0/+3.0%	-3.5/+2.5%	±5.9%	
Įат	83	light flavor (u, d, s, g)	-0.2/+0.3%	$\pm 0.4\%$	n/a	
2	rates	heavy flavor (b. c)	-1.9/+2.9%	-3.5/+2.5%	n/a	
	ью	tŧī	-0.9/+0.8%	$\pm 1.0\%$	$\pm 3.3\%$	
	Backg.	QCD, muon	$\pm 0.8\%$	$\pm 1.7\%$	$\pm 0.9\%$	
	ñ	QCD, electron	$\pm 0.4\%$	$\pm 0.8\%$	-0.4/+0.3%	
		s-, tW ch., dibosons, Z+jets	$\pm 0.3\%$	$\pm 0.6\%$	$\pm 0.5\%$	
	Tota	al marginalised uncertainty	-7.7/+7.9%	-7.7/+7.8%	n/a	
		Luminosity		±2.2%		
Se.		Scale, tt	-3.3/+1.0%	±0.9%	-4.0/+2.1%	
ije	uncert.	Scale, W+iets	-2.8/+0.3%	-0.0/+3.4%	n/a	
ig		Scale, t-, s-, tW channels	-0.4/+1.0%	±0.2%	-2.2/+2.3%	
ar	3	Matching, tt	$\pm 1.3\%$	$\pm 0.4\%$	$\pm 0.4\%$	
t II	Theor.	t-channel generator	±4.2%	$\pm 4.6\%$	$\pm 2.5\%$	
Not marginalised	Ę	PDF	$\pm 1.3\%$	$\pm 1.3\%$	$\pm 2.5\%$	
		Total theor. uncertainty	-6.3/+4.8%	-4.9/+5.9%	-5.6/+4.9%	
Sys	Syst. + theor. + luminosity uncert.		-8.1/+7.8%	-8.1/+8.4%	±10.8%	
Tot	Total (stat. + syst. + theor. + lum.)		-10.1/+9.5%	-9.4/+10.0%	±13.8%	

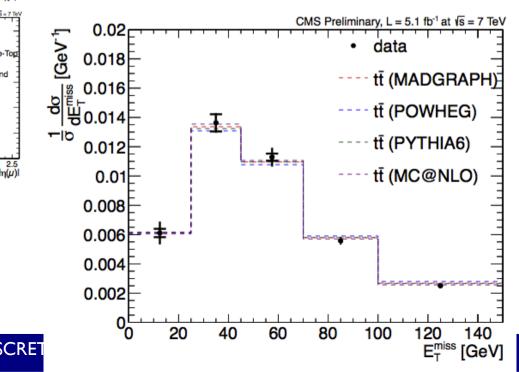
Notes: * - $R_{8/7}$ using the $\eta_{i'}$ based cross section only / ** - table corresponds to the 7 TeV analysis


Uncertainties in the t-channel at 8 TeV

Uncertainty source	in pb	relative		
Statistical	±5.7	±7.2 %		
W+jets and ttmodeling	±3.6	± 4.5 %		
JES	-6.2 / +4.7	-7.8 / +5.8 %		
JER	-0.8 / +0.3	-1.0 / + 0.4 %		
Unclustered ₽ _T	-0.8 / +0.7	-1.0 / + 0.9 %		
Pileup	-0.5 / +0.3	-0.6 / +0.4 %		
Muon trigger + reconstruction	-4.1 / +4.0	-5.1 / +5.1 %		
Q^2	±2.5	±3.1 %		
$t\bar{t}$, rate	-1.5 / + 1.7	- 1.9 / + 2.1 %		
QCD, rate	±0.7	±0.9 %		
t-channel generator	±4.4	±5.5 %		
Other backgrounds, rate	± 0.5	±0.6 %		
b-tagging	±3.7	±4.6 %		
PDF	± 3.7	±4.6 %		
Simulation statistics	±1.8	±2.2 %		
Total systematics	±11.0	±13.7 %		
Luminosity uncertainty	±4.0	±5.0 %		
Total	±13.0	±16.3%		

tt+MET

- High purity after requiring 2 b-tags
- Distinctive feature: leptons from tt are central
- Fit signal contribution in $E_{\scriptscriptstyle T}^{\;\;miss}$ bins


Comparison with different generators

LO

- Madgraph interfaced with PYTHIA: ME+PS
- **PYTHIA only PS**

NLO

- MC@NLO Is interfaced with Herwig
- Powheg is interfaced with PYTHIA

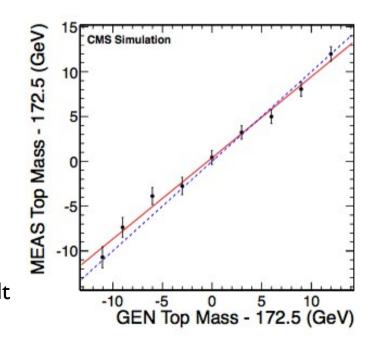
More on m_{top} from kinematic endpoints

Unbinned likelihood fit

- $\mathcal{L}(\mathbf{M}) = \prod_{i=1}^{N} \mathcal{L}_i^{210}(\mathbf{u}_i|\mathbf{M}) \cdot \mathcal{L}_i^{221}(\mathbf{u}_i|\mathbf{M}) \cdot \mathcal{L}_i^{M_{b\ell}}(\mathbf{u}_i|\mathbf{M})$
- → 3 variables: $M_{T2^{\perp}}^{210} M_{T2^{\perp}}^{221}$ and M_{bl}
- The likelihood component for each observable expressed in terms of the observable and endpoint

$$M_{\text{T2}\perp}^{\text{max}}(210) \equiv x_{\text{max}} = \frac{M_W}{2} \left(1 - \frac{m_v^2}{M_W^2} \right) + \sqrt{\frac{M_W^2}{4} \left(1 - \frac{m_v^2}{M_W^2} \right)^2 + \tilde{M}_C^2}.$$

$$M_{\text{T2}\perp}^{\text{max}}(221) = \frac{M_t}{2} \left(1 - \frac{M_W^2}{M_t^2} \right) + \sqrt{\frac{M_t^2}{4} \left(1 - \frac{M_W^2}{M_t^2} \right)^2 + \tilde{M}_C^2}.$$


$$M_{b\ell}^{\text{max}} = \frac{1}{M_W} \sqrt{(M_t^2 - M_W^2)(M_W^2 - m_v^2)}.$$

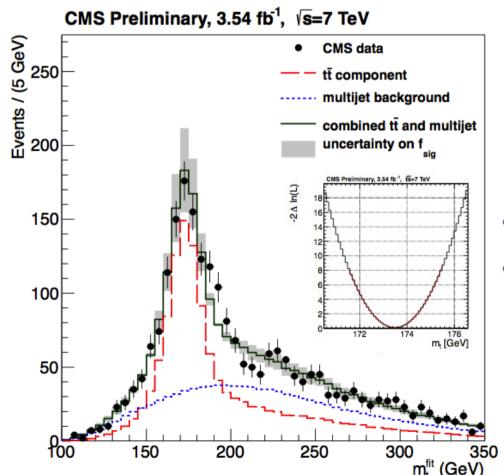
- Low correlation
- Distinct signal shapes
- → LO-based parameterizations

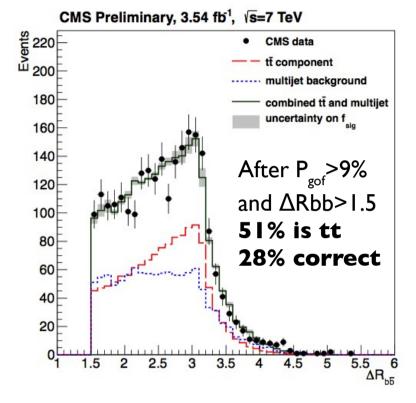
For each variable the individual likelihood is

$$\mathcal{L}_i^a(x_i|x_{\max}) = \alpha \int S^a(y|x_{\max}) \mathcal{R}_i^a(x_i - y) \, dy + (1 - \alpha) B^a(x_i)$$
Signal is parametrized as a kinked-line shape
$$S(x|x_{\max}) \equiv \begin{cases} \mathcal{N}(x_{\max} - x) & x_{lo} \leq x \leq x_{\max} \\ 0 & x_{\max} \leq x \leq x_{hi} \end{cases}$$
Background shape

Fit range is chosen to minimize the dependency of the fit result

Uncertainties in full hadronic m_{top}


- I-D analysis yields the best uncertainty in the determination of mtop
- If stat. uncertainty associated to the determination of syst. uncertainty is larger it is conservatively taken as the systematic uncertainty


-	1-D analysis	2-D analysis		
	$\delta_{m_{\rm t}}$ (GeV)	$\delta_{m_{\rm t}}$ (GeV)	$\delta_{ m JES}$	
Fit calibration	0.13	0.14	0.001	
Jet energy scale	0.97 ± 0.06	0.09 ± 0.10	$\textbf{0.002} \pm 0.001$	
b-JES	0.49 ± 0.06	0.52 ± 0.10	$\textbf{0.001} \pm 0.001$	
Jet energy resolution	0.15 ± 0.06	0.13 ± 0.10	0.003 ± 0.001	
b tagging	0.05 ± 0.06	0.04 ± 0.10	$\textbf{0.001} \pm 0.001$	
Trigger	0.24 ± 0.06	0.26 ± 0.10	0.006 ± 0.001	
Pileup	0.05 ± 0.06	0.09 ± 0.10	0.001 ± 0.001	
Parton distribution functions	0.03 ± 0.06	0.07 ± 0.10	0.001 ± 0.001	
Q^2 scale	0.08 ± 0.22	0.31 ± 0.34	0.005 ± 0.003	
ME-PS matching threshold	0.24 ± 0.22	0.29 ± 0.34	$0.001 \pm \textbf{0.003}$	
Underlying event	0.32 ± 0.15	0.88 ± 0.26	$\boldsymbol{0.007} \pm 0.002$	
Color reconnection effects	0.04 ± 0.15	0.58 ± 0.25	$\boldsymbol{0.006} \pm 0.002$	
Non-tt background	0.20 ± 0.06	0.62 ± 0.10	0.008 ± 0.001	
Total	1.25	1.46	0.015	

Top mass from jets only

- At least 6 jets (2 b-tagged with p_{τ} >30 GeV)
- Choose permutation with lowest χ^2 after kinematics fit
- Multijets background modeled from data using event mixing from pre-selected sample

- Ideogram method is applied (similar to I+jets)
- Best result attained assuming nominal JES
 (JES is dominant uncertainty 1.09 GeV)

Result – best in all hadronic

 173.49 ± 0.69 (stat.) ± 1.25 (syst.) GeV