

Search for the the CP violating $K_s \rightarrow 3\pi^0$ decay with the KLOE detector

Michał Silarski Jagiellonian University

on behalf of the KLOE/KLOE-2 collaboration

- Introduction
- **G** Search for the $K_S \rightarrow \pi^0 \pi^0 \pi^0$ decay
- Background studies
- Results of the measurement
- Summary & outlook

DISCRETE 2012, Lisbon, 3-7 December 2012

Introduction

≻ Time evolution of the $K^0 \leftrightarrow \overline{K^0}$ system in the rest frame:

$$i\frac{\partial}{\partial t}\left(\frac{|K^0\rangle}{|K^0\rangle}\right) = \mathbf{H}\left(\frac{|K^0\rangle}{|K^0\rangle}\right) = \left[\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right]\left(\frac{|K^0\rangle}{|K^0\rangle}\right)$$

> In the basis of the CP operator:

$$|K_{1} \rangle = \frac{1}{\sqrt{2}} (|K^{0} \rangle + |\overline{K^{0}} \rangle) \qquad (CP = 1)$$

$$|K_{2} \rangle = \frac{1}{\sqrt{2}} (|K^{0} \rangle - |\overline{K^{0}} \rangle) \qquad (CP = -1)$$

➤ The eigenstates of H:

 $|K_{S}\rangle$ (t = 0.9 ·10⁻¹⁰ s; ct = 2.68 cm) $|K_{L}\rangle$ (t = 5.1 · 10⁻⁸ s; ct = 15.5 m)

> The main hadronic decay modes:

$$|K_{S} > \to \pi^{+}\pi^{-} \qquad (CP = 1) \qquad |K_{L} > \to \pi^{0}\pi^{+}\pi^{-} \qquad (CP = -1 \text{ for } I=0, 2, ...) |K_{L} > \to 2\pi^{0} \qquad (CP = -1) \qquad |K_{L} > \to 3\pi^{0} \qquad (CP = -1)$$

DISCRETE 2012, Lisbon, 3-7 December 2012

 $\boldsymbol{M} = \begin{pmatrix} M_{11} & M_{12} \\ M_{12}^{*} & M_{22} \end{pmatrix}$

> But K_S and K_L are not CP eigenstates:

BR(K_L $\rightarrow \pi^+ \pi^-$) = 1.97 $\cdot 10^{-3}$ BR(K_L $\rightarrow \pi^0 \pi^0$) = 8.65 $\cdot 10^{-4}$

(J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012))

> CP violation in mixing (Δ S=2):

$$|K_{S}\rangle = \frac{1}{\sqrt{1+|\varepsilon_{S}|^{2}}} (|K_{1}\rangle + \varepsilon_{S}|K_{2}\rangle) \quad \varepsilon_{s} \neq \varepsilon_{L} \Rightarrow \text{CPTV}$$
$$|K_{L}\rangle = \frac{1}{\sqrt{1+|\varepsilon_{L}|^{2}}} (|K_{2}\rangle + \varepsilon_{L}|K_{1}\rangle)$$

 \succ CP violation directly in the decay (Δ S=1):

$$|K_1 > \rightarrow 2\pi, \quad |K_2 > \rightarrow 3\pi$$

We can define the following amplitude ratios (assuming the CPT invariance):

$$\eta_{+-} = \frac{\langle \pi^+ \pi^- | H | K_L \rangle}{\langle \pi^+ \pi^- | H | K_S \rangle} = \varepsilon + \varepsilon' \qquad \qquad \eta_{00} = \frac{\langle \pi^0 \pi^0 | H | K_L \rangle}{\langle \pi^0 \pi^0 | H | K_S \rangle} = \varepsilon - 2\varepsilon'$$

→ These parameters can be measured using the interference between $K_S \rightarrow \pi^+ \pi^$ and $K_L \rightarrow \pi^+ \pi^-$ decay:

$$N_{\pi^{+}\pi^{-}} \sim \left[e^{-\Gamma_{S}} + |\eta_{+-}|^{2} e^{-\Gamma_{L}} + 2|\eta_{+-}| \cos(\Delta m \cdot t + \varphi_{+-}) e^{-\frac{1}{2}(\Gamma_{S} + \Gamma_{L})t} \right]$$

 $\begin{aligned} |\eta_{+-}| &= (2.232 \pm 0.011) \cdot 10^{-3}; & \varphi_{+-} &= (43.51 \pm 0.05)^{\circ} \\ |\eta_{00}| &= (2.221 \pm 0.011) \cdot 10^{-3}; & \varphi_{00} &= (43.52 \pm 0.05)^{\circ} \end{aligned}$

(J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012))

▶ For the $|K_S > \rightarrow 3\pi$ decay modes:

$$\eta_{000} = \frac{\langle \pi^0 \pi^0 \pi^0 | H | K_S \rangle}{\langle \pi^0 \pi^0 \pi^0 | H | K_L \rangle} = \varepsilon + \varepsilon'_{000} \qquad \qquad \eta_{+-0} = \frac{\langle \pi^+ \pi^- \pi^0 | H | K_S \rangle}{\langle \pi^+ \pi^- \pi^0 | H | K_L \rangle} = \varepsilon + \varepsilon'_{+-0}$$

≻ In the lowest order of the χPT: $ε'_{000} = ε'_{+-0} = -2ε'$

 $Im(\eta_{+-0}) = -0.002 \pm 0.009;$ $Im(\eta_{000}) = (-0.1 \pm 1.6) \cdot 10^{-2}$

$$|\eta_{000}| = \sqrt{\frac{\tau_L BR(K_S \to 3\pi^0)}{\tau_S BR(K_L \to 3\pi^0)}} < 0.018 @ 90\% C.L.$$

(F. Ambrosino et al., Phys. Lett. B 619, 61 (2005))

> Previous measurements of η_{000} :

SND (direct search) : $BR(K_S \rightarrow 3\pi^0) < 1.4 \cdot 10^{-5}$ NA48 (interference measurement): $BR(K_S \rightarrow 3\pi^0) < 7.4 \cdot 10^{-7}$ KLOE $BR(K_S \rightarrow 3\pi^0) < 1.2 \cdot 10^{-7}$ Standard Model prediction: $BR(K_S \rightarrow 3\pi^0) = 1.9 \cdot 10^{-9}$

The DAFNE Φ-factory

- \Box e⁺e⁻ collider @ $\sqrt{s} = M_{\phi} = 1019.4$ MeV
- \Box LAB momentum $p_{\phi} \sim 13 \text{ MeV/c}$
- **)** $\sigma_{\text{peak}} \sim 3 \ \mu b$
- ❑ Separate e⁺e⁻ rings to reduce beam-beam interaction
- Beams crossing angle: 12.5 mrad
- $\Box \text{ Peak luminosity } 1.5 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

DAΦNE Luminosity history

 KLOE run: Daily performance: 7-8 pb⁻¹ Best month JL dt ~ 200 pb⁻¹ Total KLOE JL dt ~ 2400 pb⁻¹ at φ mass peak + 250 pb⁻¹ off peak (@ 1 GeV) 	BR's for selected Φ decays	
	<i>K</i> + <i>K</i> -	49.1%
	$K_S K_L$	34.1%
	ρπ + $π^+\pi^-\pi^0$	15.5%

KLOE (K LOng Experiment)

Large cylindrical drift chamber

- Uniform tracking and vertexing in all volume
- Helium based gas mixture (90% He – 10% IsoC₄H₁₀)
- □ Stereo wire geometry

$$\sigma_p/p = 0.4 \%$$

$$\sigma_{xy} = 150 \ \mu m; \ \sigma_z = 2 \ mm$$

$$\sigma_{\rm vtx} \sim 3 \text{ mm}$$

```
\sigma(M_{\pi\pi}) \sim 1 \text{ MeV}
```

Lead/scintillating-fiber calorimeter

- Hermetical coverage
- High efficiency for low energy photons

$$\sigma_{\rm E}/{\rm E} = 5.7\% / \sqrt{{\rm E}({\rm GeV})}$$

 $\sigma_{\rm t} = 57 \text{ ps} / \sqrt{{\rm E}({\rm GeV})} \oplus 140 \text{ ps}$
 $\sigma_{\rm vtx}(\gamma\gamma) \sim 1.5 \text{ cm}$

A Φ -factory offers the possibility to select pure kaon beams:

 K_s tagged by K_L interaction in EmC Efficiency ~ 30% K_s angular resolution: ~ 1° (0.3° in φ) K_s momentum resolution: ~ 2 MeV

 K_L tagged by $K_S \rightarrow \pi^+\pi^-$ vertex at IP Efficiency ~ 70% K_L angular resolution: ~ 1° K_L momentum resolution: ~ 2 MeV

SIGNAL

BACKGROUND

$$\begin{split} K_S &\to 3\pi^0 \to 6\gamma \\ K_L &\to 3\pi, \ K_S \to \pi^+ \pi^- (\ \text{,,fake } K_L^- \text{crash}'') \end{split}$$

 \Box K_L interactions in the calorimeter tag K_s decay

□ Preselected signal sample (K_L -crash + 6 photons) ~ 77000 events

Search for the $K_S \rightarrow \pi^0 \pi^0 \pi^0$ decay

 \Box K_S $\rightarrow 2\pi^0$ (4 prompt photons) used for normalization

- K_L -crash: $\varepsilon_{cr} \approx 23\%$
- ♦ prompt photon: $ε_{ph} ≈ 48\%$

Search for the K_S $\rightarrow \pi^0 \pi^0 \pi^0$ decay

Rejection of events with charged paricles

- events with at least one track from the Interaction Point (ρ_{PCA} < 4 cm & $|z_{PCA}|$ < 10 cm)
- cuts on the velocity of the tagging K_{L} meson $% 10^{-1}$ in the Φ rest frame (β_{cr}) and energy

($\rm E_{cr}\,$) of the $\rm K_{\rm L}\, cluster$

DISCRETE 2012, Lisbon, 3-7 December 2012

□ Kinematical fit

K_s mass, total 4-momentum conservation, consistency between the measured time and position of each cluster

 $\Box \Delta E / \sigma_E = (E_{Ks} - \Sigma E_{\gamma}) / \sigma_E cut$

Consistency between the K_S energy reconstructed by tagging and the sum of energies of four "best" gamma quanta

□ Signal region definition

 $\chi^{2}_{2\pi}$: pairing of 4 out of 6 photons (π^{0} masses, E_{Ks} , P_{Ks} , angle between π^{0} 's) $\chi^{2}_{3\pi}$: pairing of 6 clusters with best π^{0} mass estimates

Analysis scheme

$\Box R_{min}$

The minimum distance between clusters

Track Veto
$$\rightarrow \chi^2_{\text{fit}} \rightarrow \Delta E/\sigma_E \rightarrow \text{Sbox} \rightarrow R_{\text{min}} \rightarrow \text{counting}$$

DISCRETE 2012, Lisbon, 3-7 December 2012

Simulations vs data: Inclusive distributions

DATA

DISCRETE 2012, Lisbon, 3-7 December 2012

Simulations vs data: Inclusive distributions

DATA

DISCRETE 2012, Lisbon, 3-7 December 2012

At the end of the analysis we count N_{obs} =0 events selected as a signal and N_{exp}=0 events in MC
 6
 6
 0

- Systematic error estimation:
 - ✓ Normalization sample selection
 - ✓ Background estimation
 - ✓ Signal selection

Results of the analysis

✓ Normalization sample selection

(Acceptance, background filter)

/ Background estimation

(Energy scale and resolution of the calorimeter for data and simulations, variation of cuts on β_{cr} , E_{cr} , χ^2_{fit} , $\Delta E/\sigma_E$, R_{min})

✓ Signal selection

 $\Delta E/\sigma_E$, R_{min})

(Acceptance, background filter, energy scale and resolution of the calorimeter for data and simulations, variation of cuts on χ^2_{fit} ,

SOURCE	Δε _{2π} /ε _{2π} [%]	Δε _{3π} /ε _{3π} [%]
Acceptance	1.60	0.21
Background filter	0.46	0.30
Calorimeter energy scale		1.00
Calorimeter energy resolution		1.10
χ^2_{fit}		1.46
R _{min}		0.90
TOTAL	1.65	2.30

- At the end of the analysis we count N_{obs} =0 events selected as a signal and N_{exp}=0 events in MC
- ★ The selection efficiency for K_S→2π⁰ decay: $ε_{2π} = 0.660 \pm 0.002_{stat} \pm 0.010_{syst}$
- ♦ Normalization sample: $N_{2\pi} / ε_{2\pi} = (1.14130 \pm 0.00011) \cdot 10^8$
- ★ The selection efficiency for $K_S \rightarrow 3\pi^0$ signal: $ε_{3\pi} = 0.233 \pm 0.012_{stat} \pm 0.006_{sys}$
- The upper limit at 90% C.L. :

$$BR(K_S \to 3\pi^0) = \frac{N_{3\pi}/\epsilon_{3\pi}}{N_{2\pi}/\epsilon_{2\pi}} \times BR(K_S \to 2\pi^0) < 2.64 \times 10^{-8}$$

$$|\eta_{000}| = \sqrt{\frac{\tau_L BR(K_S \to 3\pi^0)}{\tau_S BR(K_L \to 3\pi^0)}} < 0.0088$$

- This result points to the feasibility of the first observation at KLOE-2
- Future: KLOE-2 @ Upgraded DAΦNE

DAΦNE upgrade

Luminosity vs Current Product

New interaction scheme implemented: large beam crossing angle + sextupoles for crabbed waist optics

>L_{new} ~ 3 × L_{old}

 $\rightarrow \int Ldt = 1 \text{ pb}^{-1}/\text{hour}$

KLOE upgrades: γγ taggers

Measurement of leptons momenta in $e^+e^- \rightarrow e^+e^-\gamma^*\gamma^* \rightarrow e^+e^-X$

LET: E_e ~ 160-230 MeV

- Inside KLOE detector
- ≻ LYSO+SiPM
- $ightarrow \sigma_{\rm E} < 10\%$ for E>150 MeV

HET: E_e > 400 MeV

- 11 m from IP
- Scintillator hodoscopes
- $> \sigma_{\rm E} \sim 2.5 \, {\rm MeV}$
- $\succ \sigma_{\rm T} \sim 200 \ {\rm ps}$

 $\gamma\gamma$ taggers are installed and ready for the first KLOE-2 run

KLOE upgrades: IR detectors

INNER TRACKER

- ➢ 4 layers of cylindrical triple GEM
- Better vertex reconstruction near IP
- \succ Larger acceptance for low p_t tracks

► W + scintillator tiles + SiPM/WLS

 \blacktriangleright Low-beta quadrupoles: coverage for K_L decays

CCALT

QCALT

≻ LYSO + APD

 \succ Increase acceptance for γ's from IP (21° →10°)

Increasing the statistics and acceptance of the detector while significantly reducing the background gives the realistic chances to observe the $K_S \rightarrow 3\pi^0$ decay for the first time in the near future.

THANK YOU FOR

ATTENTION

SPARES

Distributions in the $\chi^2_{2\pi}$ vs $\chi^2_{3\pi}$ boxes

$\chi^{2}_{2\pi}$ vs $\chi^{2}_{3\pi}$ boxes: Hard K_L- crash & TrV & χ_{fit} cut & $\Delta E/\sigma_{E}$

(Only SBOX and CSBOX control regions are populated at this stage of analysis) entries

entries

- DATA
- MC

➤ We can define the following amplitude ratios (assuming the CPT invariance):

$$\eta_{+-} = \frac{\langle \pi^+ \pi^- | H | K_L \rangle}{\langle \pi^+ \pi^- | H | K_S \rangle} = \varepsilon + \varepsilon' \qquad \eta_{00} = \frac{\langle \pi^0 \pi^0 | H | K_L \rangle}{\langle \pi^0 \pi^0 | H | K_S \rangle} = \varepsilon - 2\varepsilon'$$

where
$$\varepsilon = \frac{\langle \pi \pi (I=0)|H|K_L \rangle}{\langle \pi \pi (I=0)|H|K_S \rangle}$$
 and $\varepsilon' = \frac{\langle \pi \pi (I=2)|H|K_L \rangle}{\langle \pi \pi (I=2)|H|K_S \rangle} = ie^{i(\delta_2 - \delta_0)} \frac{A_2}{\sqrt{2}A_0} \left(\frac{ImA_2}{A_2} - \frac{ImA_0}{A_0}\right)$

> These parameters can be measured using the interference between $K_S \rightarrow \pi^+ \pi^$ and $K_L \rightarrow \pi^+ \pi^-$ decay:

$$N_{\pi^{+}\pi^{-}} \sim [e^{-\Gamma_{S}} + |\eta_{+-}|^{2} e^{-\Gamma_{L}} + 2|\eta_{+-}|\cos(\Delta m \cdot t + \varphi_{+-})e^{-\frac{1}{2}(\Gamma_{S} + \Gamma_{L})t}]$$

$$\begin{aligned} |\eta_{+-}| &= (2.232 \pm 0.011) \cdot 10^{-3}; & \varphi_{+-} &= (43.51 \pm 0.05)^{\circ} \\ |\eta_{00}| &= (2.221 \pm 0.011) \cdot 10^{-3}; & \varphi_{00} &= (43.52 \pm 0.05)^{\circ} \end{aligned}$$

(K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010))

Signal region definition

- $\chi^2_{2\pi}$: pairing of 4 out of 6 photons
- (π^0 masses, E_{Ks} , P_{Ks} , angle between π^0 's)
- $\chi^2{}_{3\pi}$: pairing of 6 clusters with best π^0 mass estimates

Background studies

Monte Carlo calibration

Results of the fit are then used to weight MC events

MC

Monte Carlo calibration

Introduction

- If the CP symmetry is conserved the allowed nonleptonic decays are:
 K_s → 2π and K_L → 3π
- Two pion system:
 - L the angular momentum of the system

Three pion system:

L12 – the angular momentum of a pair of pions in their center of mass frame L3 – the angular momentum of the third pion on the rest frame of kaon

$$P(\pi^{0}\pi^{0}\pi^{0}) = P_{\pi}^{3}(-1)^{L12} (-1)^{L3} = -1 (L12+L3 = 0); C (\pi^{0}\pi^{0}\pi^{0}) = C_{\pi}^{3} = 1,$$

$$CP(\pi^{0}\pi^{0}\pi^{0}) = -1$$

$$P(\pi^{+}\pi^{-}\pi^{0}) = P_{\pi}^{3}(-1)^{L12} (-1)^{L3} = -1; C (\pi^{+}\pi^{-}\pi^{0}) = C(\pi^{0}) C (\pi^{+}\pi^{-}) = (-1)^{L12}$$

$$CP(\pi^{+}\pi^{-}) = (-1)^{L12+1} = -1 (L12=0)$$

