

Studies of $b ightarrow s(d) \mu \mu$ EW penguin transitions at LHCb

Konstantinos A. Petridis

On behalf of the LHCb collaboration

DISCRETE 2012

Rare B decays

- ► Flavour changing neutral currents are forbidden at tree level in SM
- b
 ightarrow s(d) transitions mediated via a loop diagram
- ▶ In SM extensions, can receive contributions from new virtual particles
- New Physics can contribute at same level as SM giving possibility of large NP effects

Theoretical Formalism

- Model independent approach
- ► "Integrate" out heavy (m ≥ m_W) field(s) and introduce set of operators (O_i) and Wilson coefficients (C_i)

$$\mathcal{H}_{eff} \approx -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts(d)}^* \sum_{i=1}^{10} (C_i^{SM} + \Delta C_i^{NP}) \mathcal{O}_i + \sum_{NP} \frac{C_{NP}}{\Lambda_{NP}^2} \mathcal{O}_{NP}$$

▶ c.f. Fermi interaction and G_F

- New physics enters at the Λ_{NP} scale
- New physics models can modify SM coefficients and introduce new operators

K.A. Petridis (Imperial College)

Sensitivity to New Physics

 $\blacktriangleright \ b
ightarrow s(d) \mu^+ \mu^-$ transitions probe a range of operators

Operator \mathcal{O}_i	$B_{s(d)} \rightarrow X_{s(d)} \mu^+ \mu^-$	$B_{s(d)} ightarrow \mu^+ \mu^-$	$B_{s(d)} \rightarrow X_{s(d)}\gamma$
$\mathcal{O}_7 \sim m_b (ar{s_L} \sigma^{\mu u} b_R) F_{\mu u}$	\checkmark		\checkmark
${\cal O}_9 \sim (ar s_L \gamma^\mu b_L) (ar \ell \gamma_\mu \ell)$	\checkmark		
${\cal O}_{10} \sim (ar s_L \gamma^\mu b_L) (ar \ell \gamma_5 \gamma_\mu \ell)$	\checkmark	\checkmark	
$\mathcal{O}_{S,P} \sim (ar{s}b)_{S,P}(ar{\ell}\ell)_{S,P}$		\checkmark	

▶ In SM C_{S,P} ∝ m_ℓm_b/m²_W ~ 0
 ▶ In SM chirality flipped O_i suppressed by m_s/m_b

Decays and observables studied in LHCb

Observables are functions of $m^2_{\mu^+\mu^-}(q^2)$

 F_L : Longitudinal polarisation fraction of the K^*

A_{FB}: Di-muon forward-backward asymmetry

 S_3 : Asymmetry in K^* transverse polarisation

*S*₉: A *T*-odd *CP* asymmetry

 A_{CP} : CP asymmetry of B^0 and \overline{B}^0 decays

 F_H : Contr. from (pseudo)-scalar/tensor to partial width (if $m_\mu = 0$)

- A_I : Isospin asymmetry of B^0 and B^+ decays
- \mathcal{B} : Branching fraction

The LHCb detector and dataset

- \blacktriangleright LHCb is a forward detector (2 $<\eta<$ 5) designed to study heavy flavour physics
- Excellent vertex and momentum resolution, excellent particle identification
- Analyses presented today use 1 fb^{-1} of 2011 data at $\sqrt{s} = 7 \text{ TeV}$
- ▶ LHCb has recorded an additional 2 fb^{-1} of data in 2012 at $\sqrt{s} = 8 \text{ TeV}$

Typical performance:

- ▲p/p: 0.4% 0.6% for 5
- ► trigger eff for di-µ channels: 90%
- Kaon id eff: 95% for 5% mis-id rate
- Muon id eff: 98% for 1% mis-id rate

- Decay described by three angles $\theta_{\ell}, \theta_k, \phi$ and q^2
- Angular distribution written in terms of six K^{*0} helicity amplitudes (ignoring m_{μ} and scalar contributions)
- Resulting expression depends on observables with small hadronic uncertainties: A_{FB} , F_{I} , S_{3} and S_{9}

K.A. Petridis (Imperial College)

 $b \rightarrow s(d) \mu \mu$ @ LHCb

гнср гнср

$B^0 ightarrow {\cal K}^{*0} \mu^+ \mu^-$ Results [LHCb-CONF-2012-008]

- Observe \sim 900 signal candidates in $1 \, fb^{-1} \, \sqrt{s} = 7 \, TeV$ data
 - More candidates than all previous experiments combined
- Good agreement with SM prediction of observables
- SM predictions from arXiv:1105.0376 and references therein

 $B^0
ightarrow {\cal K}^{*0} \mu^+ \mu^-$ Results [LHCb-CONF-2012-008]

 The zero crossing point of A_{FB} in the SM is at q² = 4.0 - 4.3 GeV² [arXiv:1105.0376]

- ▶ The zero crossing point is measured to be at $q^2 = 4.9^{+1.1}_{-1.3}$ GeV²
- ▶ World's first measurement of A_{FB} zero crossing point
- CDF [PRL 108 (2012) 081807], Belle [PRL 103 (2009) 171801], BaBar [arXiv:1204.3993]

Constraints on scale of New Physics

- Interpret measurements of angular observables in terms of Wilson coefficients which in turn can be translated in scale of NP (Λ_{NP})
- ► arXiv:1111.1257 and updates from Altmannshofer, Paridisi and Straub

 \triangleright Using $B \rightarrow X_s \gamma$ information as well

 Loop and CKM like couplings:

$$L_{NP} \sim rac{V_{tb}V_{ts}^*}{(4\pi)^2} rac{e^{i\phi_{NP}}}{\Lambda_{NP}^2} \mathcal{O}_{NP} \ \mathbf{\Lambda}_{NP} > O(\mathbf{300~GeV})$$

$$A_{CP} = \frac{\Gamma(\bar{B}^0 \to \bar{K}^{*0} \mu^+ \mu^-) - \Gamma(B^0 \to K^{*0} \mu^+ \mu^-)}{\Gamma(\bar{B}^0 \to \bar{K}^{*0} \mu^+ \mu^-) + \Gamma(B^0 \to K^{*0} \mu^+ \mu^-)}$$

- ► A_{CP} predicted to be $O(10^{-3})$ in SM [JHEP07 (2008) 106, JHEP01(2009) 019]
- Use ratio between two magnet polarities to cancel detector related asymmetries
- ▶ Use $B^0 \rightarrow J/\psi K^*$ to account for production related asymmetries

- $A_{CP} = -0.072 \pm 0.040(stat.) \pm 0.005(syst.)$
- Consistent with SM prediction
- World's most precise measurement

The decay of $B^+ ightarrow {\cal K}^+ \mu^+ \mu^-$ [arXiv:1209.4284]

▶ Differential branching fraction as function of q^2 is sensitive to the combination of $(C_9 + C'_9)$, $(C_{10} + C'_{10})$ and $(C_7 + C'_7)$

World's most precise measurement

Theory: [JHEP07 (2011) 067], [JHEP01 (2012) 107]

- ► Fit the K⁺µ⁺µ⁻ invariant mass distribution in bins of q²
- ▶ Normalize to $B^+ \rightarrow K^+ J/\psi$
- Low q² measurement slightly below SM prediction
 - ▷ Large theoretical uncertainties
 - Uncertainties Correlated across q² bins

K.A. Petridis (Imperial College)

Angular analysis of $B^+ \rightarrow K^+ \mu^+ \mu^-$ [arXiv:1209.4284] • Can describe decay with single angle θ_ℓ

$$\frac{d\Gamma}{d\cos\theta_{\ell}} \propto \frac{3}{4}(1-F_{H})(1-\cos^{2}\theta_{\ell}) + \frac{1}{2}F_{H} + A_{FB}\cos\theta_{\ell}$$

▶ In SM
$$F_H \approx 0$$
 and $A_{FB} = 0$
▶ Theory: [JHEP07 (2011) 067], [JHEP01 (2012) 107]

World's most precise measurements

Isospin Asymmetries in $B o K^{(*)} \mu^+ \mu^-$ [JHEP 07 (2012) 133]

$$A_{I} = \frac{\Gamma(B^{0} \to K^{(*)0}\mu^{+}\mu^{-}) - \Gamma(B^{+} \to K^{(*)0}\mu^{+}\mu^{-})}{\Gamma(B^{0} \to K^{(*)0}\mu^{+}\mu^{-}) + \Gamma(B^{+} \to K^{(*)0}\mu^{+}\mu^{-})}$$

- \blacktriangleright Expect A_I close to 0 in SM
- Measured in two modes

$$> B^0 \to K^0 \mu^+ \mu^- \text{ vs } B^+ \to K^+ \mu^+ \mu^- (K^0 \text{ recoed as } K^0_s \to \pi^+ \pi^-)$$

$$> B^0 \to K^{*0} (K^+ \pi^-) \mu^+ \mu^- \text{ vs } B^+ \to K^{*+} (K^0 \pi^+) \mu^+ \mu^-$$

► Theory: [JHEP07 (2011) 067], [JHEP01 (2012) 107] ► Deficit in $B^0 \to K^0 \mu^+ \mu^-$

Isospin Asymmetries in $B \rightarrow K^{(*)} \mu^+ \mu^-$ [JHEP 07 (2012) 133]

- $\blacktriangleright B \rightarrow K \mu^+ \mu^-$ asymmetry systematically low. Naive average over q^2 gives 4.4 σ deviation
- ▶ $B \rightarrow K^* \mu^+ \mu^-$ asymmetry agrees with SM prediction
- No theoretical explanation yet within SM or otherwise

LHC

$B^+ ightarrow \pi^+ \mu^+ \mu^-$ [arXiv:1210.2645]

- ▶ $b \rightarrow d$ penguin, suppressed by $|V_{td}|^2/|V_{ts}|^2$ relative to $b \rightarrow s$ in SM
- ► SM prediction: $B = 2.0 \pm 0.2 \times 10^{-8}$ [PRD77(2008)014017]

- $B_F = 2.3 \pm 0.6(stat.) \pm 0.1(syst.) \times 10^{-8}$
- Compatible with SM prediction

$$B^{+} \rightarrow \pi^{+}\mu^{+}\mu^{-} \text{ [arXiv:1210.2645]}$$

$$\blacktriangleright \text{ Can measure } R = \frac{B_{F}(B^{+} \rightarrow \pi^{+}\mu^{+}\mu^{-})}{B_{F}(B^{+} \rightarrow K^{+}\mu^{+}\mu^{-})} \text{ and transate into } |V_{td}|/|V_{ts}|$$

$$= \text{measurement from penguin decays}$$

- $R = 0.053 \pm 0.014(stat.) \pm 0.001(syst.)$
- $|V_{td}|/|V_{ts}| = 0.266 \pm 0.035(stat.) \pm 0.007(syst.)$
- Neglecting theoretical uncertainties
- Compatible with previous measurements in $b \rightarrow s(d)\gamma$

Summary

- ▶ Presented status of LHCb studies on $b o s(d) \mu^+ \mu^-$ EW penguins
- ► Using 1 fb^{-1} of $\sqrt{s} = 7 \text{ TeV}$ data LHCb has an array of precision measurements:
 - $\rhd~$ Most precise determination of angular and CP observables in $B^0\to K^*\mu^+\mu^-$ and $B^+\to K^+\mu^+\mu^-$
 - $\,\triangleright\,$ Isospin asymmetry in $B\to K\mu^+\mu^-$ decays resulting in $\sim 4\sigma$ deviation from zero
 - \vartriangleright First $b
 ightarrow d\mu^+\mu^-$ transition observed
- Bottom line: The SM is holding strong!
- LHCb has additional 2 fb^{-1} of $\sqrt{s} = 8 \text{ TeV}$ on tape
- Updates of current analyses as well as new analyses are expected!

- 4 週 トー4 ヨ トー4 ヨ トー

Backup

3

イロト イヨト イヨト イヨト

 $B^0
ightarrow K^{*0} \mu^+ \mu^-$ results [LHCb-CONF-2012-008]

∃ ⊳ **DISCRETE 2012** 20 / 22

æ

< A

 $B^0
ightarrow K^{*0} \mu^+ \mu^-$ angular distribution

$$\frac{1}{\Gamma} \frac{\mathrm{d}^4 \Gamma}{\mathrm{d} \cos \theta_\ell \, \mathrm{d} \cos \theta_K \, \mathrm{d} \hat{\phi} \, \mathrm{d} q^2} = \frac{9}{16\pi} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) - F_L \cos^2 \theta_K (2 \cos^2 \theta_\ell - 1) + \frac{1}{4} (1 - F_L) (1 - \cos^2 \theta_K) (2 \cos^2 \theta_\ell - 1) + \frac{1}{4} (1 - F_L) (1 - \cos^2 \theta_K) (2 \cos^2 \theta_\ell - 1) + \frac{3}{4} (1 - \cos^2 \theta_K) (1 - \cos^2 \theta_\ell) \cos 2\hat{\phi} + \frac{4}{3} A_{FB} (1 - \cos^2 \theta_K) \cos \theta_\ell + S_9 (1 - \cos^2 \theta_K) (1 - \cos^2 \theta_\ell) \sin 2\hat{\phi} \right]$$

K.A. Petridis (Imperial College)

 $b \rightarrow s(d) \mu \mu$ @ LHCb

DISCRETE 2012 21 / 22

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

$B_s ightarrow \phi \mu^+ \mu^-$ [LHCb-CONF-2012-003]

- Observe 77 ± 10 signal candidates in $1 \, \text{fb}^{-1}$
- Measure $\mathcal{B}(B_s \to \phi \mu^+ \mu^-)$ relative to $\mathcal{B}(B_s \to J/\psi \phi)$
- ► $\mathcal{B}(B_s \to \phi \mu^+ \mu^-) = 0.78 \pm 0.1(stat.) \pm 0.06(syst.) \pm 0.28(\mathcal{B}) \times 10^{-6}$