# Studies of $b \rightarrow s(d) \mu \mu$ EW penguin transitions at LHCb 

Konstantinos A. Petridis

On behalf of the LHCb collaboration

## DISCRETE 2012

## Rare B decays

- Flavour changing neutral currents are forbidden at tree level in SM
- $b \rightarrow s(d)$ transitions mediated via a loop diagram
- In SM extensions, can receive contributions from new virtual particles
- New Physics can contribute at same level as SM giving possibility of large NP effects



## Theoretical Formalism

- Model independent approach
- "Integrate" out heavy $\left(m \geq m_{W}\right)$ field(s) and introduce set of operators $\left(\mathcal{O}_{i}\right)$ and Wilson coefficients $\left(C_{i}\right)$

$$
\mathcal{H}_{e f f} \approx-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s(d)}^{*} \sum_{i=1}^{10}\left(C_{i}^{S M}+\Delta C_{i}^{N P}\right) \mathcal{O}_{i}+\sum_{N P} \frac{C_{N P}}{\Lambda_{N P}^{2}} \mathcal{O}_{N P}
$$

- c.f. Fermi interaction and $G_{F}$

- New physics enters at the $\Lambda_{N P}$ scale
- New physics models can modify SM coefficients and introduce new operators


## Sensitivity to New Physics

- $b \rightarrow s(d) \mu^{+} \mu^{-}$transitions probe a range of operators

| Operator $\mathcal{O}_{i}$ | $B_{s(d)} \rightarrow X_{s(d)} \mu^{+} \mu^{-}$ | $B_{s(d)} \rightarrow \mu^{+} \mu^{-}$ | $B_{s(d)} \rightarrow X_{s(d)} \gamma$ |
| :--- | :---: | :---: | :---: |
| $\mathcal{O}_{7} \sim m_{b}\left(\bar{s}_{L} \sigma^{\mu \nu} b_{R}\right) F_{\mu \nu}$ | $\checkmark$ | $\checkmark$ |  |
| $\mathcal{O}_{9} \sim\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\ell} \gamma_{\mu} \ell\right)$ | $\checkmark$ |  |  |
| $\mathcal{O}_{10} \sim\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\ell} \gamma_{5} \gamma_{\mu} \ell\right)$ | $\checkmark$ | $\checkmark$ |  |
| $\mathcal{O}_{S, P} \sim(\bar{s} b)_{S, P}(\bar{\ell} \ell)_{S, P}$ |  | $\checkmark$ |  |

- $\operatorname{In} \mathrm{SM} C_{S, P} \propto m_{\ell} m_{b} / m_{W}^{2} \sim 0$
- In SM chirality flipped $\mathcal{O}_{i}$ suppressed by $m_{s} / m_{b}$


## Decays and observables studied in LHCb

| Decay | Observables |
| :--- | :--- |
| $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$ | $F_{L}, A_{F B}, S_{3}, S_{9}, A_{C P}$ |
| $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$ | $\mathcal{B}, F_{H}, A_{F B}$ |
| $B \rightarrow K^{(*)} \mu^{+} \mu^{-}$ | $A_{I}$ |
| $B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$ | $\mathcal{B},\left\|V_{t d}\right\| /\left\|V_{t s}\right\|\left(\right.$ using $\left.B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)$ |

Observables are functions of $m_{\mu^{+} \mu^{-}}^{2}\left(q^{2}\right)$
$F_{L}$ : Longitudinal polarisation fraction of the $K^{*}$
$A_{F B}$ : Di-muon forward-backward asymmetry
$S_{3}$ : Asymmetry in $K^{*}$ transverse polarisation
$S_{9}$ : A $T$-odd $C P$ asymmetry
$A_{C P}$ : CP asymmetry of $B^{0}$ and $\bar{B}^{0}$ decays
$F_{H}$ : Contr. from (pseudo)-scalar/tensor to partial width (if $m_{\mu}=0$ )
$A_{l}$ : Isospin asymmetry of $B^{0}$ and $B^{+}$decays
$\mathcal{B}$ : Branching fraction

- LHCb is a forward detector $(2<\eta<5)$ designed to study heavy flavour physics
- Excellent vertex and momentum resolution, excellent particle identification
- Analyses presented today use $1 \mathbf{f b}^{-1}$ of 2011 data at $\sqrt{s}=7 \mathrm{TeV}$
- LHCb has recorded an additional $2 \mathrm{fb}^{-1}$ of data in 2012 at $\sqrt{s}=8 \mathrm{TeV}$


Typical performance:

- $\Delta p / p: 0.4 \%-0.6 \%$ for $5<p<100 \mathrm{GeV}$
- trigger eff for di- $\mu$ channels: 90\%
- Kaon id eff: $95 \%$ for $5 \%$ mis-id rate
- Muon id eff: $98 \%$ for $1 \%$ mis-id rate

Angular analysis of $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$[LHCb-CONF-2012-008]


- Decay described by three angles $\theta_{\ell}, \theta_{k}, \phi$ and $q^{2}$
- Angular distribution written in terms of six $K^{* 0}$ helicity amplitudes (ignoring $m_{\mu}$ and scalar contributions)
- Resulting expression depends on observables with small hadronic uncertainties: $A_{F B}, F_{L}, S_{3}$ and $S_{9}$

 [arXiv:0811.1214]
- $S_{6}^{5} \propto-A_{F B}$
- Can discriminate between NP models
- Zero crossing point largerly free of form factor uncert.
$B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$Results [LHCb-CONF-2012-008]
- Observe $\sim 900$ signal candidates in $1 \mathrm{fb}^{-1} \sqrt{s}=7 \mathrm{TeV}$ data
$\triangleright$ More candidates than all previous experiments combined
- Good agreement with SM prediction of observables
- SM predictions from arXiv:1105.0376 and references therein



$B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$Results [LHCb-CONF-2012-008]
- The zero crossing point of $A_{F B}$ in the SM is at $q^{2}=4.0-4.3 \mathrm{GeV}^{2}$ [arXiv:1105.0376]


- The zero crossing point is measured to be at $q^{2}=4.9_{-1.3}^{+1.1} \mathrm{GeV}^{2}$
- World's first measurement of $A_{F B}$ zero crossing point
- CDF [PRL 108 (2012) 081807], Belle [PRL 103 (2009) 171801],BaBar [arXiv:1204.3993]


## Constraints on scale of New Physics

- Interpret measurements of angular observables in terms of Wilson coefficients which in turn can be translated in scale of NP ( $\left.\Lambda_{N P}\right)$
- arXiv:1111.1257 and updates from Altmannshofer, Paridisi and Straub
$\triangleright$ Using $B \rightarrow X_{s} \gamma$ information as well
- Tree level $\mathrm{O}(1)$ couplings:
$L_{N P} \sim \frac{e^{i \phi_{N P}}}{\Lambda_{N P}^{2}} \mathcal{O}_{N P}$
$\Lambda_{N P}>O(15 \mathrm{TeV})$



- Loop and CKM like couplings:

$$
\begin{aligned}
& L_{N P} \sim \frac{V_{t b} V_{t s}^{*}}{(4 \pi)^{2}} \frac{e^{i \phi_{N P}}}{\Lambda_{N P}^{2}} \mathcal{O}_{N P} \\
& \Lambda_{N P}>O(300 \mathrm{GeV})
\end{aligned}
$$





CP Asymmetry of $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$[arXiv:1210:4492]

$$
A_{C P}=\frac{\Gamma\left(\bar{B}^{0} \rightarrow \bar{K}^{* 0} \mu^{+} \mu^{-}\right)-\Gamma\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right)}{\Gamma\left(\bar{B}^{0} \rightarrow \bar{K}^{* 0} \mu^{+} \mu^{-}\right)+\Gamma\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right)}
$$

- $A_{C P}$ predicted to be $O\left(10^{-3}\right)$ in SM [JHEP07 (2008) 106,JHEP01(2009) 019]
- Use ratio between two magnet polarities to cancel detector related asymmetries
- Use $B^{0} \rightarrow J / \psi K^{*}$ to account for production related asymmetries

- $A_{C P}=$ $-0.072 \pm 0.040$ (stat.) $\pm 0.005$ (syst.)
- Consistent with SM prediction
- World's most precise measurement

The decay of $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-} \quad$ [arXiv:1209.4284]

- Differential branching fraction as function of $q^{2}$ is sensitive to the combination of $\left(C_{9}+C_{9}^{\prime}\right),\left(C_{10}+C_{10}^{\prime}\right)$ and $\left(C_{7}+C_{7}^{\prime}\right)$


World's most precise measurement

- Fit the $K^{+} \mu^{+} \mu^{-}$invariant mass distribution in bins of $q^{2}$
- Normalize to $B^{+} \rightarrow K^{+} J / \psi$
- Low $q^{2}$ measurement slightly below SM prediction
$\triangleright$ Large theoretical uncertainties
$\triangleright$ Uncertainties Correlated across $q^{2}$ bins

Theory: [JHEP07 (2011) 067], [JHEP01 (2012) 107]

## Angular analysis of $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$[arXiv:1209.4284]

- Can describe decay with single angle $\theta_{\ell}$

$$
\frac{d \Gamma}{d \cos \theta_{\ell}} \propto \frac{3}{4}\left(1-F_{H}\right)\left(1-\cos ^{2} \theta_{\ell}\right)+\frac{1}{2} F_{H}+A_{F B} \cos \theta_{\ell}
$$

- $\ln \mathrm{SM} F_{H} \approx 0$ and $A_{F B}=0$
- Theory: [JHEP07 (2011) 067], [JHEP01 (2012) 107]


World's most precise measurements

Isospin Asymmetries in $B \rightarrow K^{(*)} \mu^{+} \mu^{-}$[JHEP 07 (2012) 133]

$$
A_{I}=\frac{\Gamma\left(B^{0} \rightarrow K^{(*) 0} \mu^{+} \mu^{-}\right)-\Gamma\left(B^{+} \rightarrow K^{(*) 0} \mu^{+} \mu^{-}\right)}{\Gamma\left(B^{0} \rightarrow K^{(*) 0} \mu^{+} \mu^{-}\right)+\Gamma\left(B^{+} \rightarrow K^{(*) 0} \mu^{+} \mu^{-}\right)}
$$

- Expect $A_{\text {, }}$ close to 0 in SM
- Measured in two modes

$$
\begin{aligned}
& \triangleright B^{0} \rightarrow K^{0} \mu^{+} \mu^{-} \text {vs } B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\left(K^{0} \text { recoed as } K_{s}^{0} \rightarrow \pi^{+} \pi^{-}\right) \\
& \triangleright B^{0} \rightarrow K^{* 0}\left(K^{+} \pi^{-}\right) \mu^{+} \mu^{-} \text {vs } B^{+} \rightarrow K^{*+}\left(K^{0} \pi^{+}\right) \mu^{+} \mu^{-}
\end{aligned}
$$




- Theory: [JHEP07 (2011) 067], [JHEP01 (2012) 107]
- Deficit in $B^{0} \rightarrow K^{0} \mu^{+} \mu^{-}$

Isospin Asymmetries in $B \rightarrow K^{(*)} \mu^{+} \mu^{-}$[JHEP 07 (2012) 133]



- $B \rightarrow K \mu^{+} \mu^{-}$asymmetry systematically low. Naive average over $q^{2}$ gives $4.4 \sigma$ deviation
- $B \rightarrow K^{*} \mu^{+} \mu^{-}$asymmetry agrees with SM prediction
- No theoretical explanation yet within SM or otherwise


$$
B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-} \quad \text { [arXiv:1210.2645] }
$$

- $b \rightarrow d$ penguin, suppressed by $\left|V_{t d}\right|^{2} /\left|V_{t s}\right|^{2}$ relative to $b \rightarrow s$ in SM
- SM prediction: $\mathcal{B}=2.0 \pm 0.2 \times 10^{-8}$ [PRD77(2008)014017]

- Normalize to $B^{+} \rightarrow J / \psi K^{+}$
- Observe $25.3_{-6.4}^{+6.7}$ with $5.2 \sigma$
- Rarest B decay ever observed!
- $B_{F}=2.3 \pm 0.6$ (stat.) $\pm 0.1$ (syst.) $\times 10^{-8}$
- Compatible with SM prediction


## $B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-} \quad$ [arXiv:1210.2645]

- Can measure $R=\frac{B_{F}\left(B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}\right)}{B_{F}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)}$and tranlsate into $\left|V_{t d}\right| /\left|V_{t s}\right|$ measurement from penguin decays


- $R=0.053 \pm 0.014$ (stat.) $\pm 0.001$ (syst.)
- $\left|V_{t d}\right| /\left|V_{t s}\right|=0.266 \pm 0.035$ (stat.) $\pm 0.007$ (syst.)
- Neglecting theoretical uncertainties
- Compatible with previous measurements in $b \rightarrow s(d) \gamma$


## Summary

- Presented status of LHCb studies on $b \rightarrow s(d) \mu^{+} \mu^{-}$EW penguins
- Using $1 \mathrm{fb}^{-1}$ of $\sqrt{s}=7 \mathrm{TeV}$ data LHCb has an array of precision measurements:
$\triangleright$ Most precise determination of angular and CP observables in $B^{0} \rightarrow K^{*} \mu^{+} \mu^{-}$and $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$
$\triangleright$ Isospin asymmetry in $B \rightarrow K \mu^{+} \mu^{-}$decays resulting in $\sim 4 \sigma$ deviation from zero
$\triangleright$ First $b \rightarrow d \mu^{+} \mu^{-}$transition observed
- Bottom line: The SM is holding strong!
- LHCb has additional $2 \mathrm{fb}^{-1}$ of $\sqrt{s}=8 \mathrm{TeV}$ on tape
- Updates of current analyses as well as new analyses are expected!


## Backup

## $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$results [LHCb-CONF-2012-008]


$B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$angular distribution

$$
\begin{aligned}
\frac{1}{\Gamma} \frac{\mathrm{~d}^{4} \Gamma}{\mathrm{~d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \hat{\phi} \mathrm{~d} q^{2}}=\frac{9}{16 \pi}[ & F_{L} \cos ^{2} \theta_{K}+\frac{3}{4}\left(1-F_{L}\right)\left(1-\cos ^{2} \theta_{K}\right)- \\
& F_{L} \cos ^{2} \theta_{K}\left(2 \cos ^{2} \theta_{\ell}-1\right)+ \\
& \frac{1}{4}\left(1-F_{L}\right)\left(1-\cos ^{2} \theta_{K}\right)\left(2 \cos ^{2} \theta_{\ell}-1\right)+ \\
& S_{3}\left(1-\cos ^{2} \theta_{K}\right)\left(1-\cos ^{2} \theta_{\ell}\right) \cos 2 \hat{\phi}+ \\
& \frac{4}{3} A_{F B}\left(1-\cos ^{2} \theta_{K}\right) \cos \theta_{\ell}+ \\
& \left.S_{9}\left(1-\cos ^{2} \theta_{K}\right)\left(1-\cos ^{2} \theta_{\ell}\right) \sin 2 \hat{\phi}\right]
\end{aligned}
$$

## $B_{s} \rightarrow \phi \mu^{+} \mu^{-}$[LHCb-CONF-2012-003]



- Observe $77 \pm 10$ signal candidates in $1 \mathrm{fb}^{-1}$
- Measure $\mathcal{B}\left(B_{s} \rightarrow \phi \mu^{+} \mu^{-}\right)$relative to $\mathcal{B}\left(B_{s} \rightarrow J / \psi \phi\right)$
- $\mathcal{B}\left(B_{s} \rightarrow \phi \mu^{+} \mu^{-}\right)=0.78 \pm 0.1$ (stat.) $\pm 0.06($ syst. $) \pm 0.28(\mathcal{B}) \times 10^{-6}$

