Lepton Mixing from the Groups $\Delta\left(3 n^{2}\right)$ and $\Delta\left(6 n^{2}\right)$

C. Hagedorn
University of Padua and SISSA, Italy

Feruglio/H/Meroni/Vitale, work in progress

DISCRETE 2012, CFTP, Instituto Superior Técnico, Lisbon, 03.12.-07.12.2012

Outline

- Data on lepton mixing
- Idea
- Overview over groups $\Delta\left(3 n^{2}\right)$ and $\Delta\left(6 n^{2}\right)$
- Some results for $\Delta\left(3 n^{2}\right)$
- Some results for $\Delta\left(6 n^{2}\right)$
- Conclusions

Data on lepton mixing

Results of latest global fits (Gonzalez-Garcia et al. ('12))

$$
\begin{aligned}
& \text { best fit and } 1 \sigma \text { error } 3 \sigma \text { range } \\
& \sin ^{2} \theta_{12}=0.30_{-0.013}^{+0.013} \quad 0.27 \leq \sin ^{2} \theta_{12} \leq 0.34 \\
& \sin ^{2} \theta_{23}=\left\{\begin{array}{l}
0.41_{-0.025}^{+0.037} \\
0.59_{-0.022}^{+0.021}
\end{array} \quad 0.34 \leq \sin ^{2} \theta_{23} \leq 0.67\right. \\
& \sin ^{2} \theta_{13}=0.023_{-0.0023}^{+0.0023} \quad 0.016 \leq \sin ^{2} \theta_{13} \leq 0.030
\end{aligned}
$$

Indication of a flavor symmetry \boldsymbol{G}_{f} ?

You might answer: yes, since
Tri-Bimaximal mixing (TB mixing) (Harrison/Perkins/Scott ('O2), Xing ('O22))

$$
\begin{aligned}
& \left\|U_{P M N S}\right\|=\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right) \\
& \sin ^{2} \theta_{12}=\frac{1}{3}, \quad \sin ^{2} \theta_{23}=\frac{1}{2}, \quad \sin ^{2} \theta_{13}=0
\end{aligned}
$$

describes the data still to a certain extent well.

Indication of a flavor symmetry \boldsymbol{G}_{f} ?

You might answer: yes, since

$$
\Delta(96) \text { Mixing (de Adelhart Toorop et al. ('11)) }
$$

$$
\begin{aligned}
& \left\|U_{P M N S}\right\|=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
\frac{1}{2}(\sqrt{3}+1) & 1 & \frac{1}{2}(\sqrt{3}-1) \\
\frac{1}{2}(\sqrt{3}-1) & 1 & \frac{1}{2}(\sqrt{3}+1) \\
1 & 1 & 1
\end{array}\right) \\
& \sin ^{2} \theta_{12} \approx 0.349, \quad \sin ^{2} \theta_{23} \approx\left\{\begin{array}{cc}
0.349 \\
0.651 & , \sin ^{2} \theta_{13} \approx 0.045
\end{array}\right.
\end{aligned}
$$

describes the data to a certain extent well.

Indication of a flavor symmetry \boldsymbol{G}_{f} ?

You might answer: yes, since

$$
\Delta(384) \text { Mixing (de Adellhart Toorop et al. ('11)) }
$$

$$
\begin{aligned}
& \left\|U_{P M N S}\right\|=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
\frac{1}{2} \sqrt{4+\sqrt{2}+\sqrt{6}} & 1 & \frac{1}{2} \sqrt{4-\sqrt{2}-\sqrt{6}} \\
\frac{1}{2} \sqrt{4+\sqrt{2}-\sqrt{6}} & 1 & \frac{1}{2} \sqrt{4-\sqrt{2}+\sqrt{6}} \\
\sqrt{1-\frac{1}{\sqrt{2}}} & 1 & \sqrt{1+\frac{1}{\sqrt{2}}}
\end{array}\right) \\
& \sin ^{2} \theta_{12} \approx 0.337, \quad \sin ^{2} \theta_{23} \approx\left\{\begin{array}{cc}
0.424 & \sin ^{2} \theta_{13} \approx 0.011 \\
0.576
\end{array}\right.
\end{aligned}
$$

describes the data quite well.

Indication of a flavor symmetry G_{f} ?

You could also answer: no, see e.g. de Gouvea/Murayama ('12) However, if you follow this line of thought, then you forget that in many models beyond the SM the symmetry G_{f} also helps to constrain the form of

- mass matrices of additional particles (e.g. soft terms in SUSY models)
- additional gauge interactions (e.g. in models with gauge-Higgs unification)
in flavor space.

Idea

Derivation of the lepton mixing from how G_{f} is broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_{e} into G_{f}

Idea

Derivation of the lepton mixing from how G_{f} is broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_{e} into G_{f}

Idea

Derivation of the lepton mixing from how G_{f} is broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_{e} into G_{f}

$$
G_{f}
$$

neutrinos
Majorana: $G_{\nu}=Z_{2} \times Z_{2}$
Dirac: $G_{\nu}=Z_{M}$ with $M \geq 3$
charged leptons

$$
G_{e}=Z_{N} \quad \text { with } \quad N \geq 3
$$

Idea

Further requirements

- Two/three non-trivial angles \Rightarrow irred 3-dim rep of G_{f}
- Fix angles through $G_{\nu}, G_{e} \Rightarrow 3$ families are diff. under G_{ν}, G_{e}

Idea

- Neutrino sector, Majorana: $Z_{2} \times Z_{2}$ preserved
\rightarrow neutrino mass matrix m_{ν} fulfills

$$
Z_{i}^{T} m_{\nu} Z_{i}=m_{\nu} \quad \text { with } \quad i=1,2
$$

- Charged lepton sector: $Z_{N}, N \geq 3$, preserved
\rightarrow charged lepton mass matrix m_{e} fulfills

$$
Q_{e}^{\dagger} m_{e}^{\dagger} m_{e} Q_{e}=m_{e}^{\dagger} m_{e}
$$

Idea

- Neutrino sector, Majorana: $Z_{2} \times Z_{2}$ preserved
\rightarrow neutrino mass matrix m_{ν} fulfills
$\Omega_{\nu}^{T} m_{\nu} \Omega_{\nu}$ is diagonal

$$
Z_{i}=\Omega_{\nu} Z_{i}^{\text {diag }} \Omega_{\nu}^{\dagger} \text { with } \quad i=1,2
$$

- Charged lepton sector: $Z_{N}, N \geq 3$, preserved
\rightarrow charged lepton mass matrix m_{e} fulfills

$$
\begin{aligned}
& \Omega_{e}^{\dagger} m_{e}^{\dagger} m_{e} \Omega_{e} \text { is diagonal } \\
& Q_{e}=\Omega_{e} Q_{e}^{\text {diag }} \Omega_{e}^{\dagger} \text { with } \Omega_{e} \text { unitary }
\end{aligned}
$$

Idea

- Neutrino sector, Majorana: $Z_{2} \times Z_{2}$ preserved
\rightarrow neutrino mass matrix m_{ν} fulfills

$$
\Omega_{\nu}^{T} m_{\nu} \Omega_{\nu} \text { is diagonal }
$$

- Charged lepton sector: $Z_{N}, N \geq 3$, preserved
\rightarrow charged lepton mass matrix m_{e} fulfills

$$
\Omega_{e}^{\dagger} m_{e}^{\dagger} m_{e} \Omega_{e} \text { is diagonal }
$$

- Conclusion: $\Omega_{\nu, e}$ diagonalize m_{ν} and $m_{e}^{\dagger} m_{e}$

$$
U_{P M N S}=\Omega_{e}^{\dagger} \Omega_{\nu}
$$

Idea

$$
U_{P M N S}=\Omega_{e}^{\dagger} \Omega_{\nu}
$$

- 3 unphysical phases are removed by $\Omega_{e} \rightarrow \Omega_{e} K_{e}$
- Neutrino masses are made real and positive through $\Omega_{\nu} \rightarrow \Omega_{\nu} K_{\nu}$
- Permutations of columns of Ω_{e}, Ω_{ν} are possible: $\Omega_{e, \nu} \rightarrow \Omega_{e, \nu} P_{e, \nu}$ \Downarrow

Predictions:

Mixing angles up to exchange of rows/columns Dirac phase $\delta_{C P}$ up to π Majorana phases undetermined

Overview over groups $\Delta\left(3 n^{2}\right)$

- Series of subgroups of $S U(3)$: infinite, in general non-abelian $n \geq 2$ (Miller et al. ('16), Fairbairn et al. ('64), Luhn et al. ('07), Grimus/Ludl ('11))
- $\Delta\left(3 n^{2}\right)$ used in the literature: $\Delta(12) \simeq A_{4}, \Delta(27), \Delta(48), \Delta(75)$
- Notice $\Delta\left(3 n^{2}\right) \simeq\left(Z_{n} \times Z_{n}\right) \rtimes Z_{3}$
- Presentation of $\Delta\left(3 n^{2}\right)$ in terms of three generators a, c, d

$$
\begin{aligned}
& a^{3}=e, \quad c^{n}=e, \quad d^{n}=e, \quad c d=d c, \\
& a c a^{-1}=c^{-1} d^{-1}, \quad a d a^{-1}=c
\end{aligned}
$$

- All elements can be written as $g=a^{\alpha} c^{\gamma} d^{\delta}$

Overview over groups $\Delta\left(3 n^{2}\right)$

- Series of subgroups of $S U(3)$: infinite, in general non-abelian $n \geq 2$ (Miller et al. ('16), Fairbairn et al. ('64), Luhn et al. ('07), Grimus/Ludl ('11))
- $\Delta\left(3 n^{2}\right)$ used in the literature: $\Delta(12) \simeq A_{4}, \Delta(27), \Delta(48), \Delta(75)$
- Notice $\Delta\left(3 n^{2}\right) \simeq\left(Z_{n} \times Z_{n}\right) \rtimes Z_{3}$
- Presentation of $\Delta\left(3 n^{2}\right)$ in terms of three generators a, c, d ($\eta=e^{2 \pi i / n}$)

$$
a=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), c=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \eta & 0 \\
0 & 0 & \eta^{-1}
\end{array}\right), d=\left(\begin{array}{ccc}
\eta^{-1} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \eta
\end{array}\right)
$$

Overview over groups $\Delta\left(6 n^{2}\right)$

- Series of subgroups of $S U(3)$: infinite, in general non-abelian (Miller et al. ('16), Fairbairn et al. ('64), Escobar/Luhn ('08), Grimus/Ludl ('11))
- $\Delta\left(6 n^{2}\right)$ used in the literature: $\Delta(6) \simeq S_{3}, \Delta(24) \simeq S_{4}, \Delta(54), \Delta(96)$
- Notice $\Delta\left(6 n^{2}\right) \simeq\left(Z_{n} \times Z_{n}\right) \rtimes S_{3}$
- Presentation of $\Delta\left(6 n^{2}\right)$ in terms of four generators a, b, c, d

$$
\begin{aligned}
& b^{2}=e, \quad(a b)^{2}=e, \\
& b c b^{-1}=d^{-1}, \quad b d b^{-1}=c^{-1}
\end{aligned}
$$

- All elements can be written as $g=a^{\alpha} b^{\beta} c^{\gamma} d^{\delta}$

Overview over groups $\Delta\left(6 n^{2}\right)$

- Series of subgroups of $S U(3)$: infinite, in general non-abelian (Miller et al. ('16), Fairbairn et al. ('64), Escobar/Luhn ('07), Grimus/Ludl ('11))
- $\Delta\left(6 n^{2}\right)$ used in the literature: $\Delta(6) \simeq S_{3}, \Delta(24) \simeq S_{4}, \Delta(54), \Delta(96)$
- Notice $\Delta\left(6 n^{2}\right) \simeq\left(Z_{n} \times Z_{n}\right) \rtimes S_{3}$
- Presentation of $\Delta\left(6 n^{2}\right)$ in terms of four generators a, b, c, d

$$
a, c, d, b=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

Systematic study

- Structure of $\Delta\left(3 n^{2}\right)$ and $\Delta\left(6 n^{2}\right)$ is "simple" \rightarrow systematic study
- Approach:
- use faithful 3-dim rep of a group for left-handed leptons
- take all combinations of G_{e} and G_{ν} in G_{f}
- reduce to limited number of categories of pairs $\left\{G_{e}, G_{\nu}\right\}$
- require that three generations are distinguished by G_{e} and G_{ν}
- consider only cases in which G_{f} is "generated" from G_{e} and G_{ν}
- additional constraint for Majorana neutrinos: $G_{\nu}=Z_{2} \times Z_{2}$
- use fact that all elements g are represented by $g=a^{\alpha} c^{\gamma} d^{\delta}$ or $g=a^{\alpha} b^{\beta} c^{\gamma} d^{\delta}$

Some results for $\Delta\left(3 n^{2}\right)$

- Form of semi-direct product of $\Delta\left(3 n^{2}\right)$ shows that only one case for Majorana neutrinos exists
- Only case $n=2$ (group A_{4}) leads to "independent" pattern
- Known result (G_{e} has to be Z_{3}): "magic matrix"
(Cabibbo ('78), Wolfenstein ('78), Ma/Rajasekaran ('01), Lam ('11), de Adelhart Toorop et al. ('11))

$$
\begin{aligned}
& \left\|U_{P M N S}\right\|=\frac{1}{\sqrt{3}}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) \\
& \sin ^{2} \theta_{12}=\frac{1}{2}, \sin ^{2} \theta_{23}=\frac{1}{2}, \quad \sin ^{2} \theta_{13}=\frac{1}{3}, \quad\left|\delta_{C P}\right|=\pi / 2
\end{aligned}
$$

Some results for $\Delta\left(3 n^{2}\right)$

- Thus these groups are mainly interesting for Dirac neutrinos (and quarks)
- Next bigger group: $\Delta(27), n=3$: again the form of the PMNS matrix is the magic matrix
- Cases which need to be distinguished: n even, n odd and $3 \mid n$
- Interestingly, many of the patterns we can find have non-trivial $\delta_{C P}$

Some results for $\Delta\left(6 n^{2}\right)$

- Much more appropriate for Majorana neutrinos, if n is even, since one of the factors of the semi-direct product is S_{3}
- Known results for small n are encouraging:
- $n=2: \Delta(24) \simeq S_{4}$: TB mixing or bi-maximal mixing (Lam ('07,'11), de Adelhart Toorop et al. ('11))
- $n=4: \Delta(96): \quad$ (de Adelhart Toorop et al. ('11))

$$
\left\|U_{P M N S}\right\|=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
\frac{1}{2}(\sqrt{3}+1) & 1 & \frac{1}{2}(\sqrt{3}-1) \\
\frac{1}{2}(\sqrt{3}-1) & 1 & \frac{1}{2}(\sqrt{3}+1) \\
1 & 1 & 1
\end{array}\right)
$$

Some results for $\Delta\left(6 n^{2}\right)$

- Much more appropriate for Majorana neutrinos, if n is even, since one of the factors of the semi-direct product is S_{3}
- Known results for small n are encouraging:
- $n=2: \Delta(24) \simeq S_{4}$: TB mixing or bi-maximal mixing
(Lam ('07,'11), de Adelhart Toorop et al. ('11))
- $n=4: \Delta(96): \quad$ (de Adelhart Toorop et al. ('11))

$$
\sin ^{2} \theta_{12} \approx 0.349, \sin ^{2} \theta_{23} \approx\left\{\begin{array}{l}
0.349 \\
0.651
\end{array}, \sin ^{2} \theta_{13} \approx 0.045\right.
$$

Some results for $\Delta\left(6 n^{2}\right)$

- Much more appropriate for Majorana neutrinos, if n is even, since one of the factors of the semi-direct product is S_{3}
- Known results for small n are encouraging:
- $n=2: \Delta(24) \simeq S_{4}$: TB mixing or bi-maximal mixing
(Lam ('07,'11), de Adelhart Toorop et al. ('11))
- $n=8: \Delta(384): \quad$ (de Adelhart Toorop et al. ('11))

$$
\left\|U_{P M N S}\right\|=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
\frac{1}{2} \sqrt{4+\sqrt{2}+\sqrt{6}} & 1 & \frac{1}{2} \sqrt{4-\sqrt{2}-\sqrt{6}} \\
\frac{1}{2} \sqrt{4+\sqrt{2}-\sqrt{6}} & 1 & \frac{1}{2} \sqrt{4-\sqrt{2}+\sqrt{6}} \\
\sqrt{1-\frac{1}{\sqrt{2}}} & 1 & \sqrt{1+\frac{1}{\sqrt{2}}}
\end{array}\right)
$$

Some results for $\Delta\left(6 n^{2}\right)$

- Much more appropriate for Majorana neutrinos, if n is even, since one of the factors of the semi-direct product is S_{3}
- Known results for small n are encouraging:
- $n=2: \Delta(24) \simeq S_{4}$: TB mixing or bi-maximal mixing
(Lam ('07,'11), de Adelhart Toorop et al. ('11))
- $n=8: \Delta(384): \quad$ (de Adelhart Toorop et al. ('11))

$$
\sin ^{2} \theta_{12} \approx 0.337, \sin ^{2} \theta_{23} \approx\left\{\begin{array}{l}
0.424 \\
0.576
\end{array}, \quad \sin ^{2} \theta_{13} \approx 0.011\right.
$$

Some results for $\Delta\left(6 n^{2}\right)$

- Much more appropriate for Majorana neutrinos, if n is even, since one of the factors of the semi-direct product is S_{3}
- Known results for small n are encouraging:
- $n=2: \Delta(24) \simeq S_{4}$: TB mixing or bi-maximal mixing
(Lam ('07,'11), de Adelhart Toorop et al. ('11))
- $n=10: \Delta(600): \quad$ (Feruglio et al. (in progress), Lam ('12))

$$
\left\|U_{P M N S}\right\| \approx\left(\begin{array}{ccc}
0.799 & 0.577 & 0.170 \\
0.546 & 0.577 & 0.607 \\
0.252 & 0.577 & 0.777
\end{array}\right)
$$

Some results for $\Delta\left(6 n^{2}\right)$

- Much more appropriate for Majorana neutrinos, if n is even, since one of the factors of the semi-direct product is S_{3}
- Known results for small n are encouraging:
- $n=2: \Delta(24) \simeq S_{4}$: TB mixing or bi-maximal mixing
(Lam ('07,'11), de Adelhart Toorop et al. ('11))
- $n=10: \Delta(600): \quad$ (Feruglio et al. (in progress), Lam ('12))

$$
\sin ^{2} \theta_{12} \approx 0.343, \sin ^{2} \theta_{23} \approx\left\{\begin{array}{l}
0.379 \\
0.621
\end{array}, \sin ^{2} \theta_{13} \approx 0.029\right.
$$

Some results for $\Delta\left(6 n^{2}\right)$

- Much more appropriate for Majorana neutrinos, if n is even, since one of the factors of the semi-direct product is S_{3}
- Known results for small n are encouraging
- General results can be understood as "deviation" from TB mixing

Some results for $\Delta\left(6 n^{2}\right)$

Bounds on $3 v$ mixing angles

Some results for $\Delta\left(6 n^{2}\right)$

- Much more appropriate for Majorana neutrinos, if n is even, since one of the factors of the semi-direct product is S_{3}
- Known results for small n are encouraging
- General results can be understood as "deviation" from TB mixing
- Two interesting points:
- Solar mixing angle subject to $\sin ^{2} \theta_{12} \geq 1 / 3$
- No non-trivial Dirac phase $\delta_{C P}$
- Patterns for Majorana neutrinos work also for Dirac neutrinos and can be generated with smaller n as well

Conclusions

- Idea to relate lepton mixing to the non-trivial breaking of flavor symmetry is interesting
- Groups $\Delta\left(3 n^{2}\right)$ and $\Delta\left(6 n^{2}\right)$ allow for systematic study of mixing
- Preliminary results:
- new patterns from $\Delta\left(3 n^{2}\right)$ for Dirac neutrinos (and quarks)
- $\Delta\left(6 n^{2}\right)$ much more suitable for Majorana neutrinos viable patterns with θ_{13} small for $n=4, n=8, n=10$ found
- Goal: exhaust all possible non-abelian discrete $S U(3)$ subgroups

Thank you for your attention.

