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Data on lepton mixing

Results of latest global fits (Gonzalez-Garcia et al. (’12))

best fit and 1σ error 3σ range

sin2 θ12 = 0.30+0.013
−0.013 0.27 ≤ sin2 θ12 ≤ 0.34

sin2 θ23 =







0.41+0.037
−0.025

0.59+0.021
−0.022

0.34 ≤ sin2 θ23 ≤ 0.67

sin2 θ13 = 0.023+0.0023
−0.0023 0.016 ≤ sin2 θ13 ≤ 0.030

– p. 3/32



Indication of a flavor symmetryGf?

You might answer: yes, since

Tri-Bimaximal mixing (TB mixing) (Harrison/Perkins/Scott (’02), Xing (’02))
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describes the data still to a certain extent well.
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Indication of a flavor symmetryGf?

You might answer: yes, since

∆(96) Mixing (de Adelhart Toorop et al. (’11))
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sin2 θ12 ≈ 0.349 , sin2 θ23 ≈
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0.349

0.651
, sin2 θ13 ≈ 0.045

describes the data to a certain extent well.
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Indication of a flavor symmetryGf?

You might answer: yes, since

∆(384) Mixing (de Adelhart Toorop et al. (’11))

||UPMNS || =
1√
3









1

2

√

4 +
√
2 +

√
6 1 1

2

√

4−
√
2−

√
6

1

2

√

4 +
√
2−

√
6 1 1

2

√

4−
√
2 +

√
6

√

1− 1√
2

1
√

1 + 1√
2









sin2 θ12 ≈ 0.337 , sin2 θ23 ≈
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0.576
, sin2 θ13 ≈ 0.011

describes the data quite well.
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Indication of a flavor symmetryGf?

You could also answer: no, see e.g. de Gouvea/Murayama (’12)

However, if you follow this line of thought, then you forget that in
many models beyond the SM the symmetry Gf also helps to constrain
the form of

• mass matrices of additional particles
(e.g. soft terms in SUSY models)

• additional gauge interactions
(e.g. in models with gauge-Higgs unification)

in flavor space.
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Idea

Derivation of the lepton mixing from how Gf is broken
Interpretation as mismatch of embedding of different sub-
groups Gν and Ge into Gf

Gf

ւ ց
neutrinos

Gν

charged leptons

Ge
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Idea

Derivation of the lepton mixing from how Gf is broken
Interpretation as mismatch of embedding of different sub-
groups Gν and Ge into Gf

Gf

ւ ց
neutrinos

distinguish 3 generations

charged leptons

distinguish 3 generations
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Idea

Derivation of the lepton mixing from how Gf is broken
Interpretation as mismatch of embedding of different sub-
groups Gν and Ge into Gf

Gf

ւ ց
neutrinos

Majorana: Gν = Z2 × Z2

Dirac: Gν = ZM with M ≥ 3

charged leptons

Ge = ZN with N ≥ 3
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Idea

Gf

ւ ց
Gν Ge

Further requirements

• Two/three non-trivial angles ⇒ irred 3-dim rep of Gf

• Fix angles through Gν , Ge ⇒ 3 families are diff. under Gν , Ge
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Idea

• Neutrino sector, Majorana: Z2 × Z2 preserved

→ neutrino mass matrix mν fulfills

ZT
i mνZi = mν with i = 1, 2

• Charged lepton sector: ZN , N ≥ 3, preserved

→ charged lepton mass matrix me fulfills

Q†
em

†
emeQe = m†

eme
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Idea

• Neutrino sector, Majorana: Z2 × Z2 preserved

→ neutrino mass matrix mν fulfills

ΩT
ν mνΩν is diagonal

Zi = ΩνZ
diag
i Ω†

ν with i = 1, 2

• Charged lepton sector: ZN , N ≥ 3, preserved

→ charged lepton mass matrix me fulfills

Ω†
em

†
emeΩe is diagonal

Qe = ΩeQ
diag
e Ω†

e with Ωe unitary
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Idea

• Neutrino sector, Majorana: Z2 × Z2 preserved

→ neutrino mass matrix mν fulfills

ΩT
ν mνΩν is diagonal

• Charged lepton sector: ZN , N ≥ 3, preserved

→ charged lepton mass matrix me fulfills

Ω†
em

†
emeΩe is diagonal

• Conclusion: Ων,e diagonalize mν and m†
eme

UPMNS = Ω†
eΩν
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Idea

UPMNS = Ω†
eΩν

• 3 unphysical phases are removed by Ωe → ΩeKe

• Neutrino masses are made real and positive through Ων → ΩνKν

• Permutations of columns of Ωe, Ων are possible: Ωe,ν → Ωe,νPe,ν

⇓

Predictions:
Mixing angles up to exchange of rows/columns

Dirac phase δCP up to π

Majorana phases undetermined
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Overview over groups∆(3n2)

• Series of subgroups of SU(3): infinite, in general non-abelian n ≥ 2

(Miller et al. (’16), Fairbairn et al. (’64), Luhn et al. (’07), Grimus/Ludl (’11))

• ∆(3n2) used in the literature: ∆(12) ≃ A4, ∆(27), ∆(48), ∆(75)

• Notice ∆(3n2) ≃ (Zn × Zn)⋊ Z3

• Presentation of ∆(3n2) in terms of three generators a, c, d

a3 = e , cn = e , dn = e , cd = dc ,

aca−1 = c−1d−1 , ada−1 = c

• All elements can be written as g = aαcγdδ
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Overview over groups∆(3n2)

• Series of subgroups of SU(3): infinite, in general non-abelian n ≥ 2

(Miller et al. (’16), Fairbairn et al. (’64), Luhn et al. (’07), Grimus/Ludl (’11))

• ∆(3n2) used in the literature: ∆(12) ≃ A4, ∆(27), ∆(48), ∆(75)

• Notice ∆(3n2) ≃ (Zn × Zn)⋊ Z3

• Presentation of ∆(3n2) in terms of three generators a, c, d
(η = e2πi/n)
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Overview over groups∆(6n2)

• Series of subgroups of SU(3): infinite, in general non-abelian
(Miller et al. (’16), Fairbairn et al. (’64), Escobar/Luhn (’08), Grimus/Ludl (’11))

• ∆(6n2) used in the literature: ∆(6) ≃ S3, ∆(24) ≃ S4, ∆(54), ∆(96)

• Notice ∆(6n2) ≃ (Zn × Zn)⋊ S3

• Presentation of ∆(6n2) in terms of four generators a, b, c, d

b2 = e , (ab)2 = e ,

bcb−1 = d−1 , bdb−1 = c−1

• All elements can be written as g = aαbβcγdδ
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Overview over groups∆(6n2)

• Series of subgroups of SU(3): infinite, in general non-abelian
(Miller et al. (’16), Fairbairn et al. (’64), Escobar/Luhn (’07), Grimus/Ludl (’11))

• ∆(6n2) used in the literature: ∆(6) ≃ S3, ∆(24) ≃ S4, ∆(54), ∆(96)

• Notice ∆(6n2) ≃ (Zn × Zn)⋊ S3

• Presentation of ∆(6n2) in terms of four generators a, b, c, d

a , c , d , b =


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Systematic study

• Structure of ∆(3n2) and ∆(6n2) is "simple" → systematic study

• Approach:
• use faithful 3-dim rep of a group for left-handed leptons
• take all combinations of Ge and Gν in Gf

• reduce to limited number of categories of pairs {Ge, Gν}
• require that three generations are distinguished by Ge and Gν

• consider only cases in which Gf is "generated" from Ge and Gν

• additional constraint for Majorana neutrinos: Gν = Z2 × Z2

• use fact that all elements g are represented by g = aαcγdδ or
g = aαbβcγdδ
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Some results for∆(3n2)

• Form of semi-direct product of ∆(3n2) shows that only one case for
Majorana neutrinos exists

• Only case n = 2 (group A4) leads to "independent" pattern

• Known result (Ge has to be Z3): "magic matrix"
(Cabibbo (’78), Wolfenstein (’78), Ma/Rajasekaran (’01), Lam (’11), de Adelhart Toorop et al. (’11))
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Some results for∆(3n2)

• Thus these groups are mainly interesting for Dirac neutrinos
(and quarks)

• Next bigger group: ∆(27), n = 3:
again the form of the PMNS matrix is the magic matrix

• Cases which need to be distinguished: n even, n odd and 3|n
• Interestingly, many of the patterns we can find have non-trivial δCP
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Some results for∆(6n2)

• Much more appropriate for Majorana neutrinos, if n is even, since
one of the factors of the semi-direct product is S3

• Known results for small n are encouraging:
• n = 2: ∆(24) ≃ S4: TB mixing or bi-maximal mixing

(Lam (’07,’11), de Adelhart Toorop et al. (’11))

• n = 4: ∆(96): (de Adelhart Toorop et al. (’11))
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Some results for∆(6n2)

• Much more appropriate for Majorana neutrinos, if n is even, since
one of the factors of the semi-direct product is S3

• Known results for small n are encouraging:
• n = 2: ∆(24) ≃ S4: TB mixing or bi-maximal mixing

(Lam (’07,’11), de Adelhart Toorop et al. (’11))

• n = 4: ∆(96): (de Adelhart Toorop et al. (’11))

sin2 θ12 ≈ 0.349 , sin2 θ23 ≈







0.349

0.651
, sin2 θ13 ≈ 0.045
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Some results for∆(6n2)

• Much more appropriate for Majorana neutrinos, if n is even, since
one of the factors of the semi-direct product is S3

• Known results for small n are encouraging:
• n = 2: ∆(24) ≃ S4: TB mixing or bi-maximal mixing

(Lam (’07,’11), de Adelhart Toorop et al. (’11))

• n = 8: ∆(384): (de Adelhart Toorop et al. (’11))
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Some results for∆(6n2)

• Much more appropriate for Majorana neutrinos, if n is even, since
one of the factors of the semi-direct product is S3

• Known results for small n are encouraging:
• n = 2: ∆(24) ≃ S4: TB mixing or bi-maximal mixing

(Lam (’07,’11), de Adelhart Toorop et al. (’11))

• n = 8: ∆(384): (de Adelhart Toorop et al. (’11))

sin2 θ12 ≈ 0.337 , sin2 θ23 ≈







0.424

0.576
, sin2 θ13 ≈ 0.011
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Some results for∆(6n2)

• Much more appropriate for Majorana neutrinos, if n is even, since
one of the factors of the semi-direct product is S3

• Known results for small n are encouraging:
• n = 2: ∆(24) ≃ S4: TB mixing or bi-maximal mixing

(Lam (’07,’11), de Adelhart Toorop et al. (’11))

• n = 10: ∆(600): (Feruglio et al. (in progress), Lam (’12))
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Some results for∆(6n2)

• Much more appropriate for Majorana neutrinos, if n is even, since
one of the factors of the semi-direct product is S3

• Known results for small n are encouraging:
• n = 2: ∆(24) ≃ S4: TB mixing or bi-maximal mixing

(Lam (’07,’11), de Adelhart Toorop et al. (’11))

• n = 10: ∆(600): (Feruglio et al. (in progress), Lam (’12))

sin2 θ12 ≈ 0.343 , sin2 θ23 ≈




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0.379

0.621
, sin2 θ13 ≈ 0.029
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Some results for∆(6n2)

• Much more appropriate for Majorana neutrinos, if n is even, since
one of the factors of the semi-direct product is S3

• Known results for small n are encouraging

• General results can be understood as "deviation" from TB mixing
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Some results for∆(6n2)

– p. 30/32



Some results for∆(6n2)

• Much more appropriate for Majorana neutrinos, if n is even, since
one of the factors of the semi-direct product is S3

• Known results for small n are encouraging

• General results can be understood as "deviation" from TB mixing

• Two interesting points:
• Solar mixing angle subject to sin2 θ12 ≥ 1/3

• No non-trivial Dirac phase δCP

• Patterns for Majorana neutrinos work also for Dirac neutrinos
and can be generated with smaller n as well
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Conclusions

• Idea to relate lepton mixing to the non-trivial breaking of flavor
symmetry is interesting

• Groups ∆(3n2) and ∆(6n2) allow for systematic study of mixing

• Preliminary results:
• new patterns from ∆(3n2) for Dirac neutrinos (and quarks)
• ∆(6n2) much more suitable for Majorana neutrinos

viable patterns with θ13 small for n = 4, n = 8, n = 10 found

• Goal: exhaust all possible non-abelian discrete SU(3) subgroups

Thank you for your attention.
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