Lepton Mixing from the Groups $\Delta(3n^2)$ and $\Delta(6n^2)$

C. Hagedorn

University of Padua and SISSA, Italy

Feruglio/H/Meroni/Vitale, work in progress

DISCRETE 2012, CFTP, Instituto Superior Técnico, Lisbon, 03.12.-07.12.2012

Outline

- Data on lepton mixing
- Idea
- Overview over groups $\Delta(3n^2)$ and $\Delta(6n^2)$
- Some results for $\Delta(3n^2)$
- Some results for $\Delta(6n^2)$
- Conclusions

Data on lepton mixing

Results of latest global fits (Gonzalez-Garcia et al. ('12))

best fit and
$$1 \sigma$$
 error 3σ range
 $\sin^2 \theta_{12} = 0.30^{+0.013}_{-0.013}$ $0.27 \le \sin^2 \theta_{12} \le 0.34$
 $\sin^2 \theta_{23} = \begin{cases} 0.41^{+0.037}_{-0.025} \\ 0.59^{+0.021}_{-0.022} \end{cases}$ $0.34 \le \sin^2 \theta_{23} \le 0.67$
 $\sin^2 \theta_{13} = 0.023^{+0.0023}_{-0.0023}$ $0.016 \le \sin^2 \theta_{13} \le 0.030$

You might answer: yes, since

Tri-Bimaximal mixing (TB mixing) (Harrison/Perkins/Scott ('02), Xing ('02))

$$||U_{PMNS}|| = \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0\\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
$$\sin^2 \theta_{12} = \frac{1}{3} , \quad \sin^2 \theta_{23} = \frac{1}{2} , \quad \sin^2 \theta_{13} = 0$$

describes the data still to a certain extent well.

You might answer: yes, since

 $\Delta(96)$ Mixing (de Adelhart Toorop et al. ('11))

$$||U_{PMNS}|| = \frac{1}{\sqrt{3}} \begin{pmatrix} \frac{1}{2}(\sqrt{3}+1) & 1 & \frac{1}{2}(\sqrt{3}-1) \\ \frac{1}{2}(\sqrt{3}-1) & 1 & \frac{1}{2}(\sqrt{3}+1) \\ 1 & 1 & 1 \end{pmatrix}$$
$$\sin^2 \theta_{12} \approx 0.349 , \quad \sin^2 \theta_{23} \approx \begin{cases} 0.349 \\ 0.651 \end{cases}, \quad \sin^2 \theta_{13} \approx 0.045$$

describes the data to a certain extent well.

You might answer: yes, since

 $\Delta(384)$ Mixing (de Adelhart Toorop et al. ('11))

$$\begin{split} ||U_{PMNS}|| &= \frac{1}{\sqrt{3}} \begin{pmatrix} \frac{1}{2}\sqrt{4+\sqrt{2}+\sqrt{6}} & 1 & \frac{1}{2}\sqrt{4-\sqrt{2}-\sqrt{6}} \\ \frac{1}{2}\sqrt{4+\sqrt{2}-\sqrt{6}} & 1 & \frac{1}{2}\sqrt{4-\sqrt{2}+\sqrt{6}} \\ \sqrt{1-\frac{1}{\sqrt{2}}} & 1 & \sqrt{1+\frac{1}{\sqrt{2}}} \end{pmatrix} \\ \sin^2\theta_{12} &\approx 0.337 \;, \; \sin^2\theta_{23} \approx \begin{cases} 0.424 \\ 0.576 \end{cases} \;, \; \sin^2\theta_{13} \approx 0.011 \end{split}$$

describes the data quite well.

You could also answer: no, see e.g. *de Gouvea/Murayama ('12)* However, if you follow this line of thought, then you forget that in many models beyond the SM the symmetry G_f also helps to constrain the form of

- mass matrices of additional particles (e.g. soft terms in SUSY models)
- additional gauge interactions (e.g. in models with gauge-Higgs unification)

in flavor space.

Derivation of the lepton mixing from how G_f is broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_e into G_f

Derivation of the lepton mixing from how G_f is broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_e into G_f

 G_f

charged leptons distinguish 3 generations

Derivation of the lepton mixing from how G_f is broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_e into G_f

Idea G_f G_{ν} G_e

Further requirements

- Two/three non-trivial angles \Rightarrow irred 3-dim rep of G_f
- Fix angles through G_{ν} , $G_e \Rightarrow 3$ families are diff. under G_{ν} , G_e

• Neutrino sector, Majorana: $Z_2 \times Z_2$ preserved

ightarrow neutrino mass matrix $m_{
u}$ fulfills

 $Z_i^T m_{\nu} Z_i = m_{\nu}$ with i = 1, 2

• Charged lepton sector: Z_N , $N \ge 3$, preserved

 \rightarrow charged lepton mass matrix m_e fulfills

$$Q_e^{\dagger} m_e^{\dagger} m_e Q_e = m_e^{\dagger} m_e$$

• Neutrino sector, Majorana: $Z_2 \times Z_2$ preserved

ightarrow neutrino mass matrix $m_{
u}$ fulfills

 $\Omega_{\nu}^{T} m_{\nu} \Omega_{\nu}$ is diagonal $Z_{i} = \Omega_{\nu} Z_{i}^{diag} \Omega_{\nu}^{\dagger}$ with i = 1, 2

• Charged lepton sector: Z_N , $N \ge 3$, preserved

 \rightarrow charged lepton mass matrix m_e fulfills

 $\Omega_e^{\dagger} m_e^{\dagger} m_e \Omega_e$ is diagonal $Q_e = \Omega_e Q_e^{diag} \Omega_e^{\dagger}$ with Ω_e unitary

• Neutrino sector, Majorana: $Z_2 \times Z_2$ preserved

ightarrow neutrino mass matrix $m_{
u}$ fulfills

 $\Omega_{\nu}^{T}m_{\nu}\Omega_{\nu}$ is diagonal

• Charged lepton sector: Z_N , $N \ge 3$, preserved

 \rightarrow charged lepton mass matrix m_e fulfills

 $\Omega_e^{\dagger} m_e^{\dagger} m_e \Omega_e$ is diagonal

• Conclusion: $\Omega_{\nu,e}$ diagonalize m_{ν} and $m_e^{\dagger}m_e$

 $U_{PMNS} = \Omega_e^{\dagger} \Omega_{\nu}$

$$U_{PMNS} = \Omega_e^{\dagger} \Omega_{\nu}$$

- 3 unphysical phases are removed by $\Omega_e \rightarrow \Omega_e K_e$
- Neutrino masses are made real and positive through $\Omega_{\nu} \rightarrow \Omega_{\nu} K_{\nu}$
- Permutations of columns of Ω_e , Ω_{ν} are possible: $\Omega_{e,\nu} \rightarrow \Omega_{e,\nu} P_{e,\nu}$

\Downarrow

Predictions:

Mixing angles up to exchange of rows/columns Dirac phase δ_{CP} up to π Majorana phases undetermined

Overview over groups $\Delta(3n^2)$

- Series of subgroups of SU(3): infinite, in general non-abelian $n \ge 2$ (*Miller et al. ('16), Fairbairn et al. ('64), Luhn et al. ('07), Grimus/Ludl ('11)*)
- $\Delta(3n^2)$ used in the literature: $\Delta(12) \simeq A_4$, $\Delta(27)$, $\Delta(48)$, $\Delta(75)$
- Notice $\Delta(3n^2) \simeq (Z_n \times Z_n) \rtimes Z_3$
- Presentation of $\Delta(3n^2)$ in terms of three generators a, c, d

$$a^{3} = e$$
, $c^{n} = e$, $d^{n} = e$, $cd = dc$,
 $aca^{-1} = c^{-1}d^{-1}$, $ada^{-1} = c$

• All elements can be written as $g = a^{\alpha}c^{\gamma}d^{\delta}$

Overview over groups $\Delta(3n^2)$

- Series of subgroups of SU(3): infinite, in general non-abelian $n \ge 2$ (Miller et al. ('16), Fairbairn et al. ('64), Luhn et al. ('07), Grimus/Ludl ('11))
- $\Delta(3n^2)$ used in the literature: $\Delta(12) \simeq A_4$, $\Delta(27)$, $\Delta(48)$, $\Delta(75)$
- Notice $\Delta(3n^2) \simeq (Z_n \times Z_n) \rtimes Z_3$
- Presentation of $\Delta(3n^2)$ in terms of three generators a, c, d $(\eta = e^{2\pi i/n})$

$$a = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, c = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \eta & 0 \\ 0 & 0 & \eta^{-1} \end{pmatrix}, d = \begin{pmatrix} \eta^{-1} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \eta \end{pmatrix}$$

Overview over groups $\Delta(6n^2)$

- Series of subgroups of SU(3): infinite, in general non-abelian (*Miller et al. ('16), Fairbairn et al. ('64), Escobar/Luhn ('08), Grimus/Ludl ('11)*)
- $\Delta(6n^2)$ used in the literature: $\Delta(6) \simeq S_3$, $\Delta(24) \simeq S_4$, $\Delta(54)$, $\Delta(96)$
- Notice $\Delta(6n^2) \simeq (Z_n \times Z_n) \rtimes S_3$
- Presentation of $\Delta(6n^2)$ in terms of four generators a, b, c, d

$$b^2 = e , \ (ab)^2 = e ,$$

 $bcb^{-1} = d^{-1} , \ bdb^{-1} = c^{-1}$

• All elements can be written as $g = a^{\alpha}b^{\beta}c^{\gamma}d^{\delta}$

Overview over groups $\Delta(6n^2)$

- Series of subgroups of SU(3): infinite, in general non-abelian (*Miller et al. ('16), Fairbairn et al. ('64), Escobar/Luhn ('07), Grimus/Ludl ('11)*)
- $\Delta(6n^2)$ used in the literature: $\Delta(6) \simeq S_3$, $\Delta(24) \simeq S_4$, $\Delta(54)$, $\Delta(96)$
- Notice $\Delta(6n^2) \simeq (Z_n \times Z_n) \rtimes S_3$
- Presentation of $\Delta(6n^2)$ in terms of four generators a, b, c, d

$$a \ , \ c \ , \ d \ , \ b = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right)$$

Systematic study

- Structure of $\Delta(3n^2)$ and $\Delta(6n^2)$ is "simple" \rightarrow systematic study
- Approach:
 - use faithful 3-dim rep of a group for left-handed leptons
 - take all combinations of G_e and G_{ν} in G_f
 - reduce to limited number of categories of pairs $\{G_e, G_\nu\}$
 - require that three generations are distinguished by G_e and G_{ν}
 - consider only cases in which G_f is "generated" from G_e and G_{ν}
 - additional constraint for Majorana neutrinos: $G_{\nu} = Z_2 \times Z_2$
 - use fact that all elements g are represented by $g = a^{\alpha}c^{\gamma}d^{\delta}$ or $g = a^{\alpha}b^{\beta}c^{\gamma}d^{\delta}$

- Form of semi-direct product of Δ(3n²) shows that only one case for Majorana neutrinos exists
- Only case n = 2 (group A_4) leads to "independent" pattern
- Known result (G_e has to be Z_3): "magic matrix"

(Cabibbo ('78), Wolfenstein ('78), Ma/Rajasekaran ('01), Lam ('11), de Adelhart Toorop et al. ('11))

$$\begin{split} ||U_{PMNS}|| &= \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \\ \sin^2 \theta_{12} &= \frac{1}{2} , \quad \sin^2 \theta_{23} = \frac{1}{2} , \quad \sin^2 \theta_{13} = \frac{1}{3} , \quad |\delta_{CP}| = \pi/2 \end{split}$$

- Thus these groups are mainly interesting for Dirac neutrinos (and quarks)
- Next bigger group: $\Delta(27)$, n = 3: again the form of the PMNS matrix is the magic matrix
- Cases which need to be distinguished: n even, n odd and 3|n|
- Interestingly, many of the patterns we can find have non-trivial δ_{CP}

- Much more appropriate for Majorana neutrinos, if n is even, since one of the factors of the semi-direct product is S_3
- Known results for small *n* are encouraging:
 - n = 2: $\Delta(24) \simeq S_4$: TB mixing or bi-maximal mixing (Lam ('07,'11), de Adelhart Toorop et al. ('11))
 - n=4: $\Delta(96)$: (de Adelhart Toorop et al. ('11))

$$||U_{PMNS}|| = \frac{1}{\sqrt{3}} \begin{pmatrix} \frac{1}{2}(\sqrt{3}+1) & 1 & \frac{1}{2}(\sqrt{3}-1) \\ \frac{1}{2}(\sqrt{3}-1) & 1 & \frac{1}{2}(\sqrt{3}+1) \\ 1 & 1 & 1 \end{pmatrix}$$

- Much more appropriate for Majorana neutrinos, if n is even, since one of the factors of the semi-direct product is S_3
- Known results for small *n* are encouraging:
 - n = 2: $\Delta(24) \simeq S_4$: TB mixing or bi-maximal mixing (Lam ('07,'11), de Adelhart Toorop et al. ('11))
 - n=4: $\Delta(96)$: (de Adelhart Toorop et al. ('11))

$$\sin^2 \theta_{12} \approx 0.349 \;, \; \sin^2 \theta_{23} \approx \begin{cases} 0.349 \\ 0.651 \end{cases} \;, \; \sin^2 \theta_{13} \approx 0.045$$

- Much more appropriate for Majorana neutrinos, if n is even, since one of the factors of the semi-direct product is S_3
- Known results for small *n* are encouraging:
 - n = 2: $\Delta(24) \simeq S_4$: TB mixing or bi-maximal mixing (Lam ('07,'11), de Adelhart Toorop et al. ('11))
 - $n=8: \Delta(384):$ (de Adelhart Toorop et al. ('11))

$$||U_{PMNS}|| = \frac{1}{\sqrt{3}} \begin{pmatrix} \frac{1}{2}\sqrt{4+\sqrt{2}+\sqrt{6}} & 1 & \frac{1}{2}\sqrt{4-\sqrt{2}-\sqrt{6}} \\ \frac{1}{2}\sqrt{4+\sqrt{2}-\sqrt{6}} & 1 & \frac{1}{2}\sqrt{4-\sqrt{2}+\sqrt{6}} \\ \sqrt{1-\frac{1}{\sqrt{2}}} & 1 & \sqrt{1+\frac{1}{\sqrt{2}}} \end{pmatrix}$$

- Much more appropriate for Majorana neutrinos, if n is even, since one of the factors of the semi-direct product is S_3
- Known results for small *n* are encouraging:
 - n = 2: $\Delta(24) \simeq S_4$: TB mixing or bi-maximal mixing (Lam ('07,'11), de Adelhart Toorop et al. ('11))
 - $n=8: \Delta(384):$ (de Adelhart Toorop et al. ('11))

$$\sin^2 \theta_{12} \approx 0.337$$
, $\sin^2 \theta_{23} \approx \begin{cases} 0.424 \\ 0.576 \end{cases}$, $\sin^2 \theta_{13} \approx 0.011$

- Much more appropriate for Majorana neutrinos, if n is even, since one of the factors of the semi-direct product is S_3
- Known results for small *n* are encouraging:
 - n = 2: $\Delta(24) \simeq S_4$: TB mixing or bi-maximal mixing (Lam ('07,'11), de Adelhart Toorop et al. ('11))

•
$$n=10$$
: $\Delta(600)$: (Feruglio et al. (in progress), Lam ('12))

$$||U_{PMNS}|| \approx \left(\begin{array}{cccc} 0.799 & 0.577 & 0.170\\ 0.546 & 0.577 & 0.607\\ 0.252 & 0.577 & 0.777 \end{array}\right)$$

- Much more appropriate for Majorana neutrinos, if n is even, since one of the factors of the semi-direct product is S_3
- Known results for small *n* are encouraging:
 - n = 2: $\Delta(24) \simeq S_4$: TB mixing or bi-maximal mixing (Lam ('07,'11), de Adelhart Toorop et al. ('11))

•
$$n=10$$
: $\Delta(600)$: (Feruglio et al. (in progress), Lam ('12))

$$\sin^2 \theta_{12} \approx 0.343 \;, \; \sin^2 \theta_{23} \approx \begin{cases} 0.379 \\ 0.621 \end{cases} \;,\;\; \sin^2 \theta_{13} \approx 0.029$$

- Much more appropriate for Majorana neutrinos, if n is even, since one of the factors of the semi-direct product is S_3
- Known results for small *n* are encouraging
- General results can be understood as "deviation" from TB mixing

- Much more appropriate for Majorana neutrinos, if n is even, since one of the factors of the semi-direct product is S_3
- Known results for small *n* are encouraging
- General results can be understood as "deviation" from TB mixing
- Two interesting points:
 - Solar mixing angle subject to $\sin^2 \theta_{12} \ge 1/3$
 - No non-trivial Dirac phase δ_{CP}
- Patterns for Majorana neutrinos work also for Dirac neutrinos and can be generated with smaller n as well

Conclusions

- Idea to relate lepton mixing to the non-trivial breaking of flavor symmetry is interesting
- Groups $\Delta(3n^2)$ and $\Delta(6n^2)$ allow for systematic study of mixing
- Preliminary results:
 - new patterns from $\Delta(3n^2)$ for Dirac neutrinos (and quarks)
 - $\Delta(6n^2)$ much more suitable for Majorana neutrinos viable patterns with θ_{13} small for n = 4, n = 8, n = 10 found
- Goal: exhaust all possible non-abelian discrete SU(3) subgroups

Thank you for your attention.

