

Overview of recent CMS results

Joao Varela

CMS Deputy Spokesperson LIP Lisbon

3-7 December 2012 Instituto Superior Técnico, Lisbon

DISCRETE 2012 - Third Symposium on Prospects in the Physics of Discrete Symmetries

On behalf of the CMS Collaboration

- Jets, W&Z, top
- Higgs
- SUSY
- Other searches
- (Prospects)

Related talks at this conference:

- Top quark physics, M. Gallinaro
- Measurements of the top-quark mass and production cross section at CMS, P. F. Silva
- Results on the Search for MSSM Neutral and Charged Higgs bosons (CMS), M. Tosi
- Searches for SM Higgs boson decaying into two photons, ZZ and two τ s in CMS, M. Meneghelli

Until December 4:

- Delivered 23.1 fb⁻¹
- Recorded 21.6 fb⁻¹ (94%)
- Certification ~ 90% of data delivered is used for physics

Pileup in 2012

Peak: 37 pileup events

Design value **25 pileup events** (L=10³⁴, 25 ns)

2011-12 Datasets: Jets, W&Z, top

Inclusive jet and dijets:

- NLO QCD describes data over ~9 orders of magnitude!
- 1-2% JES.
- Constrains gluon PDF up to x=0.6

Differential Drell-Yan cross section:

 2.5M μμ pairs tests NNLO cross sections and PDFs

 $Z \rightarrow 4I decay$

Final state channels	4e	4μ	2e2µ	4ℓ	arXiv:1210
Irreducible background (pp $\rightarrow Z\gamma^* \rightarrow 4\ell$)	0.07	0.25	0.14	0.46 ± 0.05	
Other (reducible) backgrounds	0.01	0.01	0.05	0.07 ± 0.1	
Expected signal (pp $ ightarrow \mathrm{Z} ightarrow 4\ell$)	3.8	13.6	12.0	29.4 ± 2.6	
Total expected (simulation)	3.9	13.9	12.2	30.0 ± 2.6	
Observed events	2	14	12	28	
Yield from fit to the observed mass distribution	-	13.6 ± 3.8	11.5 ± 3.2	27.3 ± 5.4	

$m_{top} = 173.4 \pm 0.4 \text{ (stat)} \pm 0.9 \text{ (syst)} \text{ GeV}$

CMS PAS TOP-11-018

2011-12 Datasets: Higgs

Excess of events in the low mass region seen in ATLAS and CMS

Exclusions of M_H:

- LEP < 114 GeV (arXiv:0602042v1)
- Tevatron [156,177] GeV (arXiv:1107.5518)
- LHC [~127, 600] GeV arXiv:1202.1408 (ATLAS) arXiv:1202.1488 (CMS)

5 decay modes exploited

- bb, ττ, WW, ZZ, γγ
- Low mass region is very rich but also very challenging:

main decay modes (bb, TT) are hard to identify in the huge background

 Very good mass resolution (1%): H→γγ and H→ZZ→4I

Channel	m _н range	data set	Data used	m _H
	[GeV/c ²]	[fb-1]	CMS [fb-1]	resolution
1) H → γγ	110-150	5+5/fb	2011+12	1-2%
2) $H \rightarrow tau tau$	110-145	5+12/fb	2011+12	15%
3) $H \rightarrow bb$	110-135	5+12/fb	2011+12	10%
4) $H \rightarrow WW \rightarrow I_{\nu}I_{\nu}$	110-600	5+12/fb	2011+12	20%
5) $H \rightarrow ZZ \rightarrow 4I$	110-1000	5+12/fb	2011+12	1-2%

CMS Experiment at the LHC, CERN Data recorded: 2012-May-13 20:08:14.621490 GMT Run/Event: 194108 / 564224000

H →γγ candidate

- No update since ICHEP
- Photon energy resolution is crucial
- Multi-Variate Analysis (MVA) for photon ID and event classification
 - Divide events into non-overlapping samples of varying S/B based on properties of the reconstructed photons

 $\rightarrow \gamma \gamma$

- Two VBF categories:
 - presence of di-jets in VBF process

	Event	SM I	Higgs boson expected signal ($m_{\rm H} = 125 \text{GeV}$)					Background	
Cá	ategories	Events	ggH	VBF	VBF VH ttH σ_{eff} FWHM/2.35 (GeV) (GeV)		$m_{\gamma\gamma} = 125 \text{GeV}$ (events/GeV)		
-1	BDT 0	3.2	61%	17%	19%	3%	1.21	1.14	3.3 ± 0.4
1 fb	BDT 1	16.3	88%	6%	6%	-	1.26	1.08	37.5 ± 1.3
5	BDT 2	21.5	92%	4%	4%	-	1.59	1.32	74.8 ± 1.9
[eV	BDT 3	32.8	92%	4%	4%	-	2.47	2.07	193.6 ± 3.0
77	Dijet tag	2.9	27%	72%	1%	-	1.73	1.37	1.7 ± 0.2
1	BDT 0	6.1	68%	12%	16%	4%	1.38	1.23	7.4 ± 0.6
- P	BDT 1	21.0	87%	6%	6%	1%	1.53	1.31	54.7 ± 1.5
5.3	BDT 2	30.2	92%	4%	4%	-	1.94	1.55	115.2 ± 2.3
ν,	BDT 3	40.0	92%	4%	4%	-	2.86	2.35	256.5 ± 3.4
3 Te	Dijet tight	2.6	23%	77%	-	-	2.06	1.57	1.3 ± 0.2
8	Dijet loose	3.0	53%	45%	2%	-	1.95	1.48	3.7 ± 0.4

Sum of mass distributions for each event class, weighted by S/(S+B)

p-values

Significance based on local p-value: 4.1σ Significance based on global p-value: 3.2σ (110-150) GeV

Best fit signal strength consistent between different classes

Combined best fit signal strength (m_H =125 GeV): σ/σ_{SM} = 1.56±0.43 x SM

CMS Experiment at the LHC, CERN Data recorded: 2012-May-27 23:35:47.271030 GMT Run/Event: 195099 / 137440354

Results from $H \rightarrow ZZ \rightarrow 4I$

- Background models:
 - irreducible ZZ^(*)
 - Estimated using simulation
 - Corrected for data/simulation scale
 - reducible Z+jets, ttbar, WZ
 - Estimated from control samples

Event selection:

requires the highest possible efficiencies (lepton Reco/ID/ Isolation).

Mass distribution for the four leptons (two pairs of electrons, or two pairs of muons, or the pair of electrons and the pair of muons).

Channel	4e	4μ	2e2µ	4ℓ
ZZ background	4.7 ± 0.6	9.6 ±1.0	12.5 ± 1.4	26.8 ± 1.8
Z+X	$3.4^{+3.0}_{-2.3}$	$1.6^{+1.2}_{-0.9}$	$5.6^{+5.4}_{-3.6}$	$10.6^{+5.3}_{-4.4}$
All backgrounds	$8.0^{+3.1}_{-2.3}$	$11.2^{+1.6}_{-1.4}$	$18.1^{+5.6}_{-3.8}$	$37.3^{+6.6}_{-4.7}$
$m_H = 125 \text{ GeV}$	2.4 ± 0.4	4.6 ± 0.5	5.9 ± 0.7	12.9 ± 0.9
$m_H = 126 \text{ GeV}$	$2.7\ \pm 0.4$	5.1 ± 0.6	6.6 ± 0.8	14.4 ± 1.1
Observed	12	16	19	47

- Integrated in the mass range from 110 to 160 GeV
- Z +X background is estimated from data;
- ZZ is estimated from simulation

фр

uses kinematic inputs for signal to background discrimination $\{m_1, m_2, \theta_1, \theta_2, \theta^*, \Phi, \Phi_1\}$

$$\mathbf{K}_{\mathsf{D}} = \left[1 + \frac{\mathcal{P}_{\mathsf{bkg}}(m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1 | m_{4\ell})}{\mathcal{P}_{\mathsf{sig}}(m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1 | m_{4\ell})}\right]^{-1}$$

- For the signal, use a fully analytic parameterization
- For the use a simulation of the process $q\overline{q} \rightarrow ZZ/Z\gamma$

K_D discriminant versus m₄₁

- Data points shown with per-event mass uncertainties
 - Top: Data w.r.t. background expectation
 - Bottom: Data w.r.t 126 GeV Higgs
 expectation
- Six simultaneous two-dimensional maximum likelihood fits for each value so of m_H, in the variables m_{4I} and K_D.
- KD distribution for signal is similar for a scalar, pseudo-scalar, or a spin-two resonance with the minimal couplings, at a mass around m_H = 126 GeV

2D fit results $(K_D - m_{4l})$:

- The minimum local p-value has a significance of 4.5 sigma
- The signal strength relative to SM is $\mu = 0.80^{+0.35}_{-0.28}$ at 126 GeV.

Mass measurement

A simultaneous fit of the mass and of signal strength gives:

m_H = 126.2 ±0.6(stat)±0.2(syst) GeV

- Signature
 - 2 opposite charged leptons (only e, μ)
 - 2 neutrinos == missing transverse energy (MET)
 - no Higgs mass peak
- Analysis challenges
 - understand backgrounds
 - normalize to control regions
 - backgrounds: WW, W+jets, top, DY

- Different flavor (DF) channels are the most sensitive
 - same flavor has substantial DY background
 - gluon fusion: 0 and 1 jet categories
 - VBF: 2 jet category
- Cut-based and Shape analysis in $(m_{II}-m_{T})$ plane

e-µ mass in the 0-jet category

e-µ mass in the 1-jet category

- Two-dimensional m_{T} - m_{II} distribution unrolled in one-dimension
- 0-jet bin after the CLs fit for the mH = 125 GeV Higgs signal hypothesis

For a mass of 125 GeV:

- Observed signal significance: 3.1 sigma
- Signal strength σ/σ_{SM}: 0.74±0.25

expected/observed significance					
8 TeV cut-based	7+8 TeV shape-based				
2.4/1.7	4.1/3.1				
8 TeV cut-based 8 TeV shape-based		7+8 TeV shape-based			
0.80 ± 0.45	0.77 ± 0.28	0.74 ± 0.25			

- Reconstructed τ decays: e, μ , τ_{had}
- Event categories: 0 and 1 jet, VH, VBF
- Main ingredients of the analysis:
 - tau pair mass resolution
 - good understanding of the backgrounds

from C. Pauss HCP 2012

7 and 8 TeV data; all categories combined

Sensitivity ~1 times SM Mild excess at low mass ~ 1.5 sigma Combined σ/σ_{SMH} at m_H = 125 GeV: 0.7±0.5

$VH \rightarrow Vbb$ analysis

5 channels:

At 125 GeV:

- Expected limit 1.2 times SM
- The significance of the excess is 2.2 σ

Combined signal strength: 1.3 +0.7 -0.6

Combination of 5 channels: bb, $\tau\tau$, WW, ZZ, $\gamma\gamma$

Significance 6.9σ versus 7.8σ expected.

Model independent mass measurement from the two high-resolution channels:

 m_{χ} = 125.8 ± 0.4 (stat) ± 0.4 (syst) GeV

The combined 68% CL contour assumes that the relative event yields among the three channels are those expected from the standard model

Overall best-fit signal strength in the combination:

 $\sigma/\sigma_{SM} = 0.88 \pm 0.21$

Fermion and Vector Boson Couplings Custodial Symmetry $\lambda_{wz} = \kappa_w / \kappa_z$ CMS Preliminary $\sqrt{s} = 7 \text{ TeV}, L \le 5.1 \text{ fb}^{-1} \sqrt{s} = 8 \text{ TeV}, L \le 12.2 \text{ fb}^{-1}$ CMS Preliminary $\sqrt{s} = 7$ TeV, L ≤ 5.1 fb⁻¹ $\sqrt{s} = 8$ TeV, L ≤ 12.2 fb⁻¹ 5.0 к_F (scaling of <u>f</u>ermion couplings) SM Higgs Fermiophobic Bkg. only 2∆ In Observed 4.5 ---- Exp. for SM H 4.0 3.5 3.0 $H \rightarrow \tau \tau$ 2.5 2.0 1.5 0.5 1.0 0.5 0 0.0 0 0.5 1.5 0.5 1.5 $\kappa_{\rm v}$ (scaling of vector boson couplings) λ_{WZ}

Couplings look consistent with SM Higgs

- Expected separation between 0+ and 0-: 2 standard deviations
- Scalar (0+): data consistent (0.6 standard deviations)
- Pseudoscalar (0-): data different by 2.5 standard deviations

2011-12 Datasets: SUSY

The initial SUSY program at CMS was designed to be

1. Generic

• Signature based searches not tuned to a particular SUSY model

1. Broad

- Cover many possible signatures
 - Fully hadronic final state
 - Final states with leptons; final states with photons
 - Assume stable LSP: all final states with missing E_T
 - Most of the searches have a version with b-tag
- Use different methods
 - eg: four methods for the all hadronic channel (α_T , MHT, MT2, razor)
 - Counting as well as shapes analysis

1. Robust

• Background estimated from data as much as possible

SMS interpretation

At a Crossroad

Savas Dimopoulos, CERN Colloquium, Sep 20, 2012

- Search for stops and sbottoms in gluino decays
 - Relatively light stops are needed for naturalness
 - In natural SUSY the gluino cannot be too heavy
 - If the other squarks are very heavy, then the gluino will decay into sbottoms and stops with high BR
- Search for direct stop and sbottom pair production
 - To close the loophole that the "gluino is too heavy"
- Existing "generic" searches can be re-interpreted in this context
- New targeted searches have been developed for pair production

$\widetilde{g} \rightarrow t \ t \ \widetilde{\chi}^0; \ m(\widetilde{q}) {\gg} m(\widetilde{g})$

 $\widetilde{\textbf{g}} \rightarrow \textbf{b} \; \textbf{b} \; \widetilde{\chi}^{\textbf{0}} \textbf{;} \; \textbf{m}(\widetilde{\textbf{q}}) \boldsymbol{\gg} \textbf{m}(\widetilde{\textbf{g}})$

95% exclusion limits for $\tilde{g} \rightarrow b \ b \ \tilde{\chi}^0$; m(\tilde{q})>>m(\tilde{g})

DISCRETE 2012, CMS overview, J. Varela

EWK production

Models with decays into sleptons

Models with decays into W and Z

- Trilepton + MET final states
- Same-sign dileptons

- $Z \rightarrow \ell \ell + \ell + MET$
- $Z \rightarrow \ell \ell + W/Z \rightarrow jet-jet + MET$
- Four leptons

 $\chi^+\chi^0$ exclusion limits

7 TeV result

New 8 TeV result

DISCRETE 2012, CMS overview, J. Varela

Prospects

Simplified generator study 0.11 S.Bolognesi et al., arXiv:1208.4018 0.08 ZZ: likelihood discriminator 0.05 WW feature: angle between leptons 0.03 $-\gamma\gamma$: production angle For 5+30 fb⁻¹: 0. $X \to ZZ \quad X \to WW \quad X \to \gamma\gamma \text{ combined}$ scenario 0_m^+ vs bkg 7.1 4.5 5.2 9.9 0_{m}^{+} vs 0^{-} 4.142 11 0.0 0_{m}^{+} vs 2_{m}^{+} 1.6 2.5 3.9 2.50.16 0.14

- Up to 4σ separation possible in 2012
 - for both odd parity and spin-2
 - ATLAS+CMS combined

DISCRETE 2012, CMS overview, J. Varela

cos₀

- Two scenarios:
 - Scenario 1: same systematics as in 2012
 - Scenario 2: theory systematics scaled by a factor ½, other systematics scaled by 1/√L

With 300 fb⁻¹ the uncertainties of the Higgs couplings are expected in the range $\sigma (\kappa_V) \sim 3-6\%$ $\sigma (\kappa_b) \sim 7-15\%$

- Extrapolation by two orders of magnitude to higher luminosity
 - is subject to large uncertainties
 - scenarios 1 and 2 provide likely upper and lower bounds
- Experience at LEP and Tevatron indicates that scaling with $1/\sqrt{L}$ is not unrealistic
- With 3000 fb⁻¹ the Higgs couplings can possibly be determined with high precision (1-3%)
- The decay H→µµ can be observed with a significance of 5 sigma
 - measurement of the Hµµ coupling with a precision of ~10%.
- Measurement of multiple Higgs boson production is possible
 - The SM cross section for di-Higgs boson production is 33 fb at 14 TeV.
 - Measurement of the Higgs potential

	Uncertainty (%)	
Coupling	$3000 {\rm ~fb^{-1}}$	
	Scenario 1	Scenario 2
κ_{γ}	5.4	1.5
κ_V	4.5	1.0
κ_g	7.5	2.7
κ_b	11	2.7
κ_t	8.0	3.9
$\kappa_{ au}$	5.4	2.0

Scenario 1:

- 2012 systematics Scenario 2:
- theory syst: scaled by a factor ¹/₂
- other systematics scaled by $1/\sqrt{L}$

- The LHC experiments have exceeded the design performance, showing that precision physics can be made at high luminosity and pileup.
- Impressive performance of the standard model describing the LHC data. This is a tribute to decades of hard and rigorous theoretical work.
- As of today, the 125 GeV resonance is compatible with the SM Higgs boson
- Bright prospects for physics at LHC with higher energy and luminosity. We are just at the beginning.

BACKUP

DISCRETE 2012, CMS overview, J. Varela

Reconstruction of hard collisions in high pileup environment requires detectors with very high granularity:

- efficient association of charged tracks to collision vertices
- reconstruction of charged and neutral particles in jets
- pileup neutrals corrected w/global energy density (ρ)

Physics with high pileup requires full particle flow reconstruction assuring:

- precise jet energy correction
- robust missing energy measurement
- efficient lepton isolation

Very efficient reconstruction code is needed to stay within computing budget

DISCRETE 2012, CMS overview, J. Varela

Event Reconstruction

Stable particles in the event are reconstructed by a sophisticated algorithm that combines information from all sub-detectors.

DISCRETE 2012, CMS overview, J. Varela

CMS Preliminary L = 4.7 fb⁻¹ \sqrt{s} = 7 TeV anti-k, R =0.7

Top cross sections at \sqrt{s} = 8 TeV

CMS-TOP-12-006/7 CMS Preliminary, vs=8 TeV $228 \pm 9 \pm \frac{29}{26} \pm 10 \text{ pb}$ CMS I+jets (e/µ+jets) TOP-12-006 (L=2.8/fb) (val. ± stat. ± syst. ± lumi.) CMS dilepton (ee,µµ,eµ) $227 \pm 3 \pm 11 \pm 10 \text{ pb}$ TOP-12-007 (L=2.4/fb) (val. ± stat. ± syst. ± lumi.) CMS combined $227 \pm 3 \pm 11 \pm 10 \text{ pb}$ (val. ± stat. ± syst. ± lumi.) Approx. NNLO QCD, Kidonakis, arXiv:1205.3453 (2012) Approx. NNLO QCD, Cacciari et al., arXiv:1111.5869 (2011) Approx. NNLO QCD, Langenfeld et al., PRD 80 (2009) 054009 (Scale & PDF uncertainty) Approx. NNLO QCD, Langenfeld et al., PRD 80 (2009) 054009 (Scale uncertainty) 0 100 200 300 400 $\sigma(t\bar{t})$ (pb)

σ = 227 ± 3 (stat) ± 11 (syst) ± 10 (lumi) pb

 $\sigma_{tt}(NLO)$ = 225.2 pb calculated using MCFM

CMS Inclusive Razor

CMS searches have excluded light squarks and gluinos up to $\sim 1 \text{ TeV}$

- Tau pair mass (I+h and II decays)
- Two categories: non-b-tagged and b-tagged (to enhance bbΦ)

Same-sign dileptons and b jets

Search for SUSY in Z+jets events

- Dilepton analyses split into off and on Z resonance:
 - Different backgrounds and different model

Compensitavitsearch methods based on orthogonal data control samples:

MET and; Jet-Z-Balanc = $\left|\sum_{\text{iets}} \vec{p}_T\right| - \left|\vec{p}_T^{(Z)}\right| = \left|-E_T^{\text{miss}} - \vec{p}_T^{(Z)}\right| - \left|\vec{p}_T^{(Z)}\right|$

tt background predicted from shapes in $e\mu$ events and M(ee)/M($\mu\mu$) sideband data

Z+artificial MET predicted from data-derived MET resolution templates. Z+artificial JZB predicted from symmetry in negative \rightarrow positive tails of JZB.

Depending on the nature of χ^0 , single or double photon final states can dominate

Exclude gluino masses below 460 GeV (assuming 100% BR into three jets)

 Search for a new heavy gauge boson W' decaying to a charged lepton (µ or e) and v

$$M_{\mathrm{T}} = \sqrt{2 \cdot p_{\mathrm{T}}^{\ell} \cdot E_{\mathrm{T}}^{\mathrm{miss}} \cdot (1 - \cos \Delta \phi_{\ell,
u})}$$

- Many models possible
 - right-handed W' bosons with standard-model couplings
 - left-handed W' bosons including interference
 - Kaluza-Klein W'KK-states in split-UED
 - Excited chiral boson (W*)

M(W ['] ssm) 95% CL	Luminosity	Expected	Observed
ATLAS e+μ, 2011	4.7	> 2.55 TeV	> 2.55 TeV
CMS e+µ, 2012	3.7	> 2.80 TeV	> 2.85 TeV
CMS e+µ, 2011+2012	5.0 + 3.7	> 2.85 TeV	> 2.85 TeV

Heavy Neutrino in 8 TeV

[CMS PAS EXO-12-017]

 We search for the decay of W_R → µµjj and eejj, as in a Left-Right Symmetric Model

- Selection
 - − Lepton p_T >60/40 GeV, motivated by W decay
 - Jet p⊺ > 40 GeV
 - M(II) > 200 GeV to reduce DY+jets.
- Background
 - Top: data-driven from eµjj
 - DY+jets: normalised to data, MC shape in Z peak
 - QCD: data-driven fake rate
 - VV, Single top: from MC

- Search assumes small $W_R W_L$ and $N_I N_{I'}$ mixing angles, only one lepton channel kinematically accessible
- Primary Systematic Uncertainties
 - Signal Eff.: 6-10% from lepton
 - Background: ~50% from DY+jets shape, ~16% from top shape

For $M(N)=M(W_R)/2$; $M(W_R) > 2.8 \text{ TeV}$

j.e.u.y.MET

78

- Hypothetical BH would evaporate into many high-p_T objects
 - Estimate by S_T , the p_T sum of physics objects with $p_T > 50 \text{ GeV}$
- Main background of QCD estimated by fit to n=2 distribution
 - Normalised for each multiplicity bin separately at S_T = 1.8–2.2 TeV
 - Model-independent limits vs S_T and multiplicity

Large improvement in sensitivity (~10-20%) with respect to 2011 analysis

[CMS PAS EXO-12-009]

- Search for Z-like narrow resonances decaying to dileptons
- Interesting features in dilepton spectra
 - around 2σ each for CMS & ATLAS in e+μ
 - similar in scale to 2011 Higgs excess

[hep-ex 1206.1849]

CMS EXO-12-015

Limits on the combined 7 TeV and 8 TeV data from 2011+2012

- M(Z'_{SSM}) > 2590 GeV at 95% C.L.
- M(Z' ψ) > 2260 GeV at 95% C.L.

Excess just below 1 TeV all but gone in CMS data

- Z' might couple preferentially to third-generation fermions
 - 5 fb-1 at √s = 7 TeV
 - Study: $\tau_e \tau_\mu$, $\tau_e \tau_h$, $\tau_\mu \tau_h$, $\tau_h \tau_h$
 - plot effective (visible) mass
- Backgrounds:
 - DY Z $\rightarrow \tau \tau$, W+jets, tt, VV, QCD
 - estimated from data where possible

M(Z' _{SSM})	expected	observed
CMS	> 1.1 TeV	> 1.4 TeV
ATLAS	> 1.4 TeV	> 1.3 TeV

- Boosted top events
 - Pioneered by CMS
 - Strong limits on Kaluza-Klein gluons and Z' -like objects decaying to top pairs

- Search for dijet resonance in smoothly falling mass spectrum
 - leading jet mass $m_{jj} > 0.9-1$ TeV from trigger and other constraints
 - Background estimated from smooth functional fit

[CMS PAS EXO-12-016]

- GMSB (SUSY) decays typically include many jets
- Selection: photon with $E_T > 100$, three jets with $p_T > 35$
 - relaxed ECAL timing and shower-shape cuts
 - ET^{miss} and ECAL timing main discriminants

Much-improved sensitivity to long-lived neutralino

[CMS PAS EXO-11-035]

84

 Look for missing energy and radiated jet (photon)

- Monojet Selection:
 - Leading jet pT > 120 GeV, $|\eta| < 2$
 - allow a second jet if not back-to-back
 - veto isolated leptons
- Backgrounds and Uncertainties
 - Z + (jets/γ) --> vv+(jets/γ)
 - W + (jets/γ) --> lv+(jets/γ)
 - smaller backgrounds from top, QCD, noncollision
- Missing Energy (ETmiss) to distinguish signal

Spin-dependent couplings

 Limits extend well below Direct DM (DD) searches

Spin-independent couplings

competitive at low masses
 where nuclear recoil imposes a
 threshold for detection in DD
 case

