

EDM (Theory and) Experiment: Search for new Physics beyond the Standard Model

December 5, 2012

(on behalf of the **BNL-EDM** and **JEDI collaborations**)

DISCRETE 2012, JINR, Lisboa, Portugal

Outline

Introduction **Electric Dipole Moments Physics Impact Charged particle EDM searches Concepts for dedicated Storage Ring searches Technological challenges Precursor Experiments Timelines of projects** Conclusion

Introduction: The big challenges

Conventional HEP wisdom, but there is more than that ...

Introduction: Physics Frontiers

f.rathmann@fz-juelich.de

Introduction: Precision Frontier

5

CERN Courier November 2012

Viewpoint

Charting the future of European particle physics Tor carrying out the rese

Tatsuya Nakada considers what the updated European Strategy for Particle Physics needs to address.

ESPP, Cracow, September 2012

for carrying out the research programme, such as accelerator science, detector R&D, computing and infrastructure for large detector construction, were also addressed. The meeting demonstrated that there is an emerging consensus that new physics must be studied both by direct searches at the highest-energy accelerator possible, as well as by precision experiments with and without accelerators.

The Preparatory Group is in the process of producing a summary document on the

A most promising additional frontier: Precision

Introduction: Precision Frontier

6

Example: Neutron (nEDM)

Search for Electric Dipole Moments (EDM) of fundamental particles

7

Outline

Introduction

Electric Dipole Moments

- **Physics Impact**
- **Charged particle EDM searches**
 - **Concepts for dedicated Storage Ring searches**
 - **Technological challenges**
 - **Precursor Experiments**
- **Timelines of projects**
- Conclusion

Physics: Fundamental Particles

Charge symmetric

 \rightarrow No EDM (d = 0)

8

μ: **MDM** \vec{d} : EDM

Do particles (e.g., electron, nucleon) have an EDM?

EDMs: Discrete Symmetries

Permanent EDMs violate **P** and **T**. Assuming **CPT** to hold, **CP** violated also.

f.rathmann@fz-juelich.de

EDM Theory and Experiment: Search for new Physics beyond the Standard Model

EDMs: Why is CPV so interesting?

Discrete Symmetries: the Standard Model and Beyond

Chris Quigg Theoretical Physics Department Fermi National Accelerator Laboratory

- CPV in the SM points to physics we do not understand
- CPV is highly sensitive to physics beyond the SM (New Physics)
- CPV is accessible to a wide range of experiments
- New source of CPV beyond the SM required for baryogenesis

Physics beyond the Standard Model (**BSM**)

Outline

Introduction **Electric Dipole Moments Physics Impact** Charged particle EDM searches **Concepts for dedicated Storage Ring searches Technological challenges Precursor Experiments Timelines of projects** Conclusion

Physics: What caused the Baryon asymmetry?

ICH

Carina Nebula: Largest-seen star-birth regions in the galaxy					
What happened to the antimatter?					
:					
	$(n_B - n_{\bar{B}})/n_{\gamma}$				
Observed	$(6.11 \pm 0.19) \times 10^{-10}$	WMAP+COBE (2003)			
SM exp.	~10 ⁻¹⁸				
· ABARASA D.					
Sakharov (1967): Three conditions for baryogenesis					
 B number conservation violated sufficiently strongly C and CP violated, B and anti-Bs with different rates Evolution of universe outside thermal equilibrium 					

The mystery of the **missing antimatter** (the puzzle of our existence)

Physics: Potential of EDMs

N. Arkani-Hamed (IAS, Princeton) at **Intensity Frontier WS**, USA (2011)

f.rathmann@fz-juelich.de

Physics: Potential of EDMs

G. Isidori – Symmetry Physics Implications

ESPP Open Symposium [Cracow, 10-12 Sep. 2011]

* The key role of LFV and EDMs

The search for Electric Dipole Moments of fundamental particles (n, e, μ , ... *and, more generally, atoms or heavy nuclei*), share the three main virtues of LFV searches:

• We know CP is not an exact symmetry of nature => non-vanishing EDMs

world-wide effort in trying to improve the limits by ~ 1 order of magnitude

G. Isidori at ESPP Open Symposium, Cracow (Sept. 2012)

f.rathmann@fz-juelich.de

Physics: Potential of EDMs

J.M. Pendlebury: "nEDM has killed more theories than any other single expt."

Physics: Limits for Electric Dipole Moments

EDM searches – only upper limits yet (in e·cm)

	Particle/Atom Current EDM Limit		Future Goal	$\sim d_n$ equivalent
	Electron	$< 1.6 imes 10^{-27}$		
	Neutron	$< 3 \times 10^{-26}$	$\sim \! 10^{-28}$	10 ⁻²⁸
	¹⁹⁹ Hg	$< 3.1 imes 10^{-29}$	~10 ⁻²⁹	10 ⁻²⁶
≯	¹²⁹ Xe	$< 6 imes 10^{-27}$	$\sim \! 10^{-30} - 10^{-33}$	$\sim 10^{-26} - 10^{-29}$
	Proton	$< 7.9 \times 10^{-25}$	~10 ⁻²⁹	10 ⁻²⁹
	Deuteron	?	~10 ⁻²⁹	$3 \times 10^{-29} - 5 \times 10^{-31}$

Huge efforts underway worldwide to improve limits / find EDMs

Physics: Ongoing/planned Searches

P. Harris, K. Kirch ... A huge worldwide effort

Outline

Introduction **Electric Dipole Moments Physics Impact Charged particle EDM searches Concepts for dedicated Storage Ring searches Technological challenges Precursor Experiments Timelines of projects** Conclusion

Principle: Frozen spin Method

For transverse electric and magnetic fields in a ring $(\vec{\beta} \cdot \vec{B} = \vec{\beta} \cdot \vec{E} = 0)$, anomalous spin precession is described by Thomas-BMT equation:

$$\vec{\omega}_{G} = -\frac{q}{m} \left\{ \vec{G} \times \vec{B} + \left[G - \left(\frac{m}{p}\right)^{2} \right] \frac{\vec{\beta} \times \vec{E}}{c} \right\} \qquad \left(G = \frac{g-2}{2} \right)$$

Magic condition: Spin along momentum vector

1. For any sign of *G*, in a combined electric and magnetic machine

$$E = \frac{GBc\beta\gamma^2}{1 - G\beta^2\gamma^2} \approx GBc\beta\gamma^2 \qquad \begin{array}{c} E = E_{\text{radial}} \\ B = B_{\text{vertical}} \end{array}$$

2. For G > 0 (protons) in an all electric ring

$$G - \left(\frac{m}{p}\right)^2 = 0 \rightarrow p = \frac{m}{\sqrt{G}} = 700.74 \frac{\text{MeV}}{\text{c}}$$
 (magic)

\rightarrow Magic rings to measure EDMs of **free** charge particles

Principle: Rings for srEDM searches

- Place particles in a storage ring
- Align spin along momentum ("Freeze" horizontal spin precession)
- Search for time development of vertical polarization

New Method to measure EDMs of **free** charge particles: **Magic rings with spin frozen along momentum**

EDMs: Storage ring projects

pEDM in all electric ring at BNL or at FNAL

CW and CCW propagating beams

Jülich, focus on deuterons, or a combined machine

Two projects: **US** (BNL or FNAL) and **Europe** (FZJ)

f.rathmann@fz-juelich.de

EDM Theory and Experiment: Search for new Physics beyond the Standard Model 21

Beat systematics: BNL Proposal

CW & CCW beams cancels systematic

2 beams simultaneously rotating in an all electric ring (cw, ccw)

Status: Approved BNL-Proposal Submitted to DOE

Goal for protons

effects

$$\sigma_{d_p} \approx 2.5 \times 10^{-29} \,\mathrm{e} \cdot \mathrm{cm} \,\mathrm{(one \, year)}$$

Many technological challenges need to be met

Principle: Magic Storage ring

A magic storage ring for protons (electrostatic), deuterons, ...

particle	<i>p</i> (GeV/c)	E(MV/m)	B (T)
proton	0.701	16.789	0.000
deuteron	1.000	-3.983	0.160
³ He	1.285	17.158	-0.051

Possible to measure p, d, ³He using **ONE** machine with $r \sim 30$ m

24

CCW & CCW with magnetic field:

Richard Talmans concept for a Jülich all-in-one machine

Iron-free, current-only, magnetic bending, eliminates hysteresis

Magic ring: Jülich all-in-one machine (R. Talmans concept)

<i>r</i> = 10 m	particle	<i>p</i> (GeV/c)	T (GeV)	E (MV/m)	B (T)
	proton	855.3	331.3	6.8	-0.005
	deuteron	381 . 0	38.3	-1.3	-0.015
	³ He	739.8	95.8	13.240	-0.050

Very compact machines possible for srEDM searches

f.rathmann@fz-juelich.de EDM Theory and Experiment: Search for new Physics beyond the Standard Model

ÜLICH

EDMs – Sensitivity Reach

EDM search in charged baryon (systems)

No direct measurements for proton and deuteron EDM yet !

Outline

Introduction **Electric Dipole Moments Physics Impact Charged particle EDM searches Concepts for dedicated Storage Ring Searches Technological challenges Precursor Experiments Timelines of projects** Conclusion

Charged particle EDM searches require development of a new class of high-precision machines with mainly electric fields for bending and focussing.

Other topics:

- Electric field gradients (~ 17 MV/m at 2 cm)
- Spin coherence time ($\geq 1000 \text{ s}$)
- Continuous polarimetry (< 1 ppm)
- Beam positioning (10 nm)
- Spin tracking

These issues must be addressed experimentally at existing facilities

Challenge: Electric field for magic rings

E-field (MV/m)

Challenge to produce large electric field gradients

f.rathmann@fz-juelich.de

EDM Theory and Experiment: Search for new Physics beyond the Standard Model

29

Challenge: Niobium electrodes

Large-grain Nb at plate separation of a few cm yields ~20 MV/m

f.rathmann@fz-juelich.de

Challenge: Spin coherence time

Spin closed orbit

Challenge: Spin coherence time

We usually don't worry about coherence of spins along \hat{n}_{co}

Polarization not affected!

At injection all spin vectors aligned (coherent)

After some time, spin vectors get out of phase and fully populate the cone

Situation very different, when you deal with $\vec{S} \perp \hat{n}_{co}$ machines with frozen spin.

At injection all spin vectors aligned

Later, spin vectors are out of phase in the horizontal plane

Longitudinal polarization vanishes!

In an EDM machine with frozen spin, observation time is limited.

f.rathmann@fz-juelich.de

Challenge: SCT stimates (N.N. Nikolaev)

One source of spin coherence are random variations of the spin tune due to the momentum spread in the beam

 $\delta\theta = G\delta\gamma$ and $\delta\gamma$ is randomized by e.g., electron cooling $\cos \omega t \rightarrow \cos(\omega t + \delta\theta)$

$$\tau_{sc} \approx \frac{1}{f_{\rm rev} G^2 \langle \delta \gamma^2 \rangle} \approx \frac{1}{f_{\rm rev} G^2 \gamma^2 \beta^4} \left\langle \frac{\delta p^2}{p} \right\rangle^{-1}$$

Estimate: $T_{\rm kin} = 100 \text{ MeV}$ $f_{\rm rev} = 0.5 \text{ MHz}$ $G_p = 1.79$ $G_d = -0.14$

 $\tau_{sc}(p) \approx 3 \cdot 10^3 \,\mathrm{s}$ $\tau_{sc}(d) \approx 5 \cdot 10^5 \,\mathrm{s}$

Spin coherence time for deuterons may be **100**× larger than for protons

EDM at COSY: COoler SYnchrotron

34

Challenge: First measurement of SCT

f.rathmann@fz-juelich.de

EDM Theory and Experiment: Search for new Physics beyond the Standard Model

Challenge: SCT recent achievements

Result from 2012 run

Excellent progress towards the SCT goal for pEDM: SCT~1000 s

Challenge: Polarimetry

Nuclear Instruments and Methods in Physics Research A 664 (2012) 49-64

ABSTRACT

This paper reports deuteron vector and tensor beam polarization measurements taken to investigate the systematic variations due to geometric beam misalignments and high data rates. The experiments used the In-Beam Polarimeter at the KVI-Groningen and the EDDA detector at the Cooler Synchrotron COSY at Jülich. By measuring with very high statistical precision, the contributions that are second-order in the systematic errors become apparent. By calibrating the sensitivity of the polarimeter to such errors, it becomes possible to obtain information from the raw count rate values on the size of the errors and to use this information to correct the polarization measurements. During the experiment, it was possible to demonstrate that corrections were satisfactory at the level of 10^{-5} for deliberately large errors. This may facilitate the real time observation of vector polarization changes smaller than 10^{-6} in a search for an electric dipole moment using a storage ring.

© 2011 Elsevier B.V. All rights reserved.

Beam polarimetry at the ppm level achieved for deuteron beams

f.rathmann@fz-juelich.de

Outline

Introduction **Electric Dipole Moments Physics Impact Charged particle EDM searches Concepts for dedicated Storage Ring Searches Technological challenges Precursor Experiments Timelines of projects** Conclusion

f.rathmann@fz-juelich.de EDM Theory and Experiment: Search for new Physics beyond the Standard Model

Precursor experiments: RF methods

Methods based on making the spin precession in the machine resonant with the orbit motion

Two ways:

- 1. Use an RF device that operates on some harmonics of the spin precession frequency
- 2. Operate ring on an imperfection resonance

Use existing magnetic machines for first direct EDM measurements

39

Precursor experiments: Resonance Method with "magic" RF Wien filter

Avoids coherent betatron oscillations of beam. Radial RF-E and vertical RF-B fields to observe spin rotation due to EDM **Approach pursued for a first direct measurement at COSY.**

Statistical sensitivity for d_d in the range 10^{-23} to 10^{-24} e·cm range possible.

- Alignment and field stability of ring magnets
- Imperfection of RF-E(B) flipper

Precursor experiments: Resonance Method for deuterons at COSY

EDM effect accumulates in P_{v}

f.rathmann@fz-juelich.de

EDM Theory and Experiment: Search for new Physics beyond the Standard Model

41

Precursor experiments: Resonance Method for deuterons at COSY

42

Linear extrapolation of P_y for a time period of $\tau_{sc} = 1000 \text{ s} (= 3.7 \cdot 10^8 \text{ turns})$ yields a sizebale $P_y \sim 10^{-3}$.

43

Precursor experiments: Resonance EDM measurement with a static Wien filter

Machine is operated on an imperfection spin resonance at $\gamma G = 2$

Similar accumulation of EDM signal, systematics more difficult, strength of imperfection resonance must be suppressed by closed-orbit corrections.

Outline

Introduction **Electric Dipole Moments Physics Impact** Charged particle EDM searches **Concepts for dedicated Storage Ring Searches Technological challenges Precursor Experiments Timelines of projects** Conclusion

Timeline: BNL EDM

Technically driven for all-electric pEDM

Timeline: Stepwise approach all-in-one machine for JEDI

Step	Aim / Scientific goal	Device / Tool	Storage ring
1	Spin coherence time studies	Horizontal RF-B spin flipper	COSY
Ľ	Systematic error studies	Vertical RF-B spin flipper	COSY
	COSY upgrade	Orbit control, magnets,	COSY
2	First direct EDM measurement at 10⁻²⁴e·cm	RF-E(B) spin flipper	Modified COSY
3	Built dedicated all-in-one ring for p , d , ³ He	Common magnetic- electrostatic deflectors	Dedicated ring
4	EDM measurement of p , d , ³ He at 10^{-29} e·cm		Dedicated ring

Time scale:Steps 1 and 2: < 5 years</th>Steps 3 and 4: > 5 years

f.rathmann@fz-juelich.de

СН

Conclusion

- Measurements of EDMs are extremely difficult, but fantastic BSM physics reach
- Two storage ring projects, at BNL and Jülich
 - Jülich goes for all-in-one machine with copper-only magnets
- Pursue SCT investigations at COSY
- Very good prospects for first direct EDM measurements of p and d at COSY using resonance methods based on RF E(B) -fields
- New JEDI collaboration established
- Both Collaborations work on technological challenges: Polarimetry, SCT, E-fields, BPMs

Georg Christoph Lichtenberg (1742-1799)

"Man muß etwas Neues machen, um etwas Neues zu sehen."

"You have to make (create) something new, if you want to see something new"

f.rathmann@fz-juelich.de

Spares

EDM Theory and Experiment: Search for new Physics beyond the Standard Model

f.rathmann@fz-juelich.de

49

srEDM cooperations

International srEDM Network

Institutional (MoU) and Personal (Spokespersons ...) Cooperation, Coordination

srEDM Collaboration (BNL) (spokesperson Yannis Semertzidis) JEDI Collaboration (FZJ) (spokespersons: A. Lehrach, J. Pretz, F.R.)

Magnetic moment, spin, g and G

Nuclear magneton

$$\mu_N = \frac{e \cdot \hbar}{2 \cdot m_p} = 5.05078324 \, \mathrm{JT}^{-1}$$

$$\vec{\mu} = g \cdot \mu_N \cdot \frac{m_p}{m} \cdot Z \cdot \vec{s}$$

particle	spin <i>s</i>	charge Z	g	$G=rac{g-2}{2}$
proton	$\frac{1}{2}$	1	5.586	1.793
deuteron	1	1	1.714	-0.143
³ He	$\frac{1}{2}$	2	-6.368	-4.184

Operation of "magic" RF Wien filter

EDM Theory and Experiment: Search for new Physics beyond the Standard

f.rathmann@fz-juelich.de

Model

Simulation of resonance Method with Magic Wien filter for deuterons at COSY Parameters: beam energy $T_d = 50 \text{ MeV}$ assumed EDM $d_d = 10^{-24} \text{ e} \cdot \text{cm}$ $L_{RF} = 1 \text{ m}$ 30 kV/cm E-field Linear extrapolation of P_{v} for a time period of $\tau_{sc} = 100000 \text{ s} (= 3.7 \cdot 10^{10} \text{ turns})$. -0.02 P_{v} -0.04EDM effect accumulates in P_{v} -0.063×10¹⁰ 1×10¹⁰ 2×10^{10} 0 turn number TOT HEW PHYSICS DEVOTO THE STATUATO THEORY AND EXDENMENT. SEALCH

f.rathmann@fz-juelich.de

Model

Why also EDMs of protons and deuterons?

Proton and deuteron EDM experiments may provide one order higher sensitivity. In particular the deuteron may provide a much higher sensitivity than protons.

Nuclear EDM: T,P-odd NN interaction gives 50 times larger contribution than nucleon EDM Sushkov, Flambaum, Khriplovich 1984

Consensus in the theoretical community:

Essential to perform EDM measurements on different targets (p, d, 3He) with similar sensitivity:

- unfold the underlying physics,
- explain the baryogenesis.

History of neutron EDM limits

 Smith, Purcell, Ramsey PR 108, 120 (1957)
 RAL-Sussex-ILL (d_n < 2.9 ×10⁻²⁶ e⋅cm) PRL 97,131801 (2006)

Adopted from K. Kirch

EDM Theory and Experiment: Search for new Physics beyond the Standard

f.rathmann@fz-juelich.de

Model

Magic condition: Protons

Case 2: radial *E* and vertical *B* fields

Magic condition: Deuterons

radial E and vertical B fields

EDM Theory and Experiment: Search for new Physics beyond the Standard Model

f.rathmann@fz-juelich.de

radial E and vertical B fields

EDM Theory and Experiment: Search for new Physics beyond the Standard Model

f.rathmann@fz-juelich.de

Some polarimetry issues

pC and dC polarimetry is the currently favored approach for the pEDM experiment at BNL

srEDM experiments use frozen spin mode, i.e., beam mostly polarized along direction of motion,

most promising ring options use cw & ccw beams.

- scattering on C destructive on beam and phase-space,
- scattering on C determines polarization of mainly particles with large betatron amplitudes, and
- is not capable to determine $\vec{P} = \begin{pmatrix} P_{\chi} \\ P_{\gamma} \end{pmatrix}$
- For elastic scattering longitudinal analyzing powers are tiny (A_z violates parity).

Ideally, use a method that would determine $\vec{P}(t)$.

Exploit observables that depend on beam and target polarization

Spin-dependent differential cross section for $\overrightarrow{\left(\frac{1}{2}\right)} + \overrightarrow{\left(\frac{1}{2}\right)} \rightarrow \frac{1}{2} + \frac{1}{2}$

$$\frac{\sigma}{\sigma_0} = 1 + A_y [(P_y + Q_y) \cos \varphi - (P_x + Q_x) \sin \varphi] + A_{xx} [P_x Q_x \cos^2 \varphi + P_y Q_y \sin^2 \varphi + (P_x Q_y + P_y Q_x) \sin \varphi \cos \varphi] + A_{yy} [P_x Q_x \sin^2 \varphi + P_y Q_y \cos^2 \varphi - (P_x Q_y + P_y Q_x) \sin \varphi \cos \varphi] + A_{xz} [(P_x Q_z + P_z Q_x) \cos \varphi + (P_y Q_z + P_z Q_y) \sin \varphi] + A_{zz} P_z Q_z$$
Analyzing power $A_y = A_y(\theta)$
Spin correlations $A_{ij} = A_{ij}(\theta)$

In *pp* scattering, necessary observables are well-known in the range 50 – 2000 MeV (not so for *pd* or *dd*). EDM Theory and Experiment: Search for new Physics beyond the Standard f.rathmann@fz-juelich.de

How could one do that, determine \vec{P} ?

Suggestion 1: Use a polarized \vec{H} storage cell target

- Detector determines \vec{P} of cw & ccw beams separately, based on kinematics.
- Alignment of target polarization \vec{Q} along x, y, z axes by magnetic fields. Leads to unwanted MDM rotations \rightarrow absolute no-go in EDM experiments.

How could one do that, determine \vec{P} ?

Suggestion 2: Use colliding beam from external source

- Collide two external beams with cw and ccw stored beams.
- Energy could be tuned to match detector acceptance.
- Polarization components of probing low-energy beam can be made **large**, would be selected by spin rotators in the transmission lines.
- Luminosity estimates necessary

How could one do that, determine \vec{P} ?

Suggestion 3: Use directly reactions from colliding beams

cw beam
$$\vec{P} = \begin{pmatrix} P_x \\ P_y \\ P_z \end{pmatrix}$$
 ccw beam $\vec{Q} = \begin{pmatrix} Q_x \\ Q_y \\ Q_z \end{pmatrix}$
ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_z \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_z \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_z \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_z \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_z \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_z \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_z \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_z \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_z \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_z \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_z \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_z \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_z \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_z \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_z \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_z \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_z \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_z \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_z \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_z \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_z \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_z \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_z \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_z \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw $\vec{Q}_x = \begin{pmatrix} Q_x \\ Q_y \\ Q_y \end{pmatrix}$ ccw \vec{Q}

Requires luminosity, β -functions at IP should be rather small.

- Advantage over suggestion 2. is that f_{rev} supports luminosity.
- Disadvantage is that sensitivity comes mainly from terms with A_{xz} and A_{zz} .
- Detailed estimates necessary.

Luminosity estimate for the collider option UJÜLICH

Even under these very optimistic assumptions, event rate will be rather low. **Rate** = $L \times \sigma_{pp}$ = $3.1 \cdot 10^{28} [\text{cm}^{-2} \text{s}^{-1}] \times 10^{-27} [\text{cm}^{2} \text{mb}^{-1}] \times 15 [\text{mb}] \approx 466 \text{ s}^{-1}$

f.rathmann@fz-juelich.de

Model

Resonance Method with RF E-fields

This way, the EDM signal is **accumulated** during the cycle.

- Statistical improvement over single turn effect is about: $\sqrt{1000s/1\mu s} \approx 10^5$.
- Brings us in the 10^{-24} e·cm range for d_d .
- But: Flipping fields will lead to coherent betatron oscillations, with hard to handle systematics.

f.rathmann@fz-juelich.de

Simulation of resonance Method with RF E-fields for deuterons at COSY

Simulation of resonance Method with RF E-fields for deuterons at COSY

Symmetries

Physical laws are invariant under certain transformations.

EDM Theory and Experiment: Search for new Physics beyond the Standard Model

EDM Workshop at ECT* (Trento)

October 1-5, 2012

http://www.ectstar.eu/

Organizing committee

– Jülich

Hans Ströher h.stroeher@fz-juelich.de Frank Rathmann f.rathmann@fz-juelich.de Andreas Wirzba a.wirzba@fz-juelich.de

– Brookhaven

Mei Bai mbai@bnl.gov William Marciano marciano@bnl.gov Yannis Semertzidis yannis@bnl.gov

EDM Theory and Experiment: Search for new Physics beyond the Standard Model