Very rare decays at LHCb

Serena Oggero Nikhef

4th December, Discrete 2012, Lisbon

Why look for very rare decays? (1)

SM: vertices involving γ , Z⁰ and G are flavour-conserving, no FCNC at tree level (GIM)

Only at one-loop level \rightarrow suppressed processes.

"Size" of the FCNC transition (effective vertex) depends on

- ★ masses of internal quarks/leptons
 ⇒ D more suppressed than B, K decays
- ★ V_{CKM} elements ⇒ $(b \rightarrow d)$ more suppressed than $(b \rightarrow s)$

Why look for very rare decays? (2)

But!

- Purely leptonic final states: theoretical calculation clean, H_{eff} under control
 - low-energy hadronic matrix elements from leading semileptonic decays
 - perturbative QCD corrections recently improved
 - New Physics can strongly modify the BR (new processes, new particles)

More on electroweak penguins on Thursday (K. Petridis)

Example: diagrams contributing to $B^0_{(s)} \rightarrow \mu^+ \mu^-$.

LHCb analysis discussed

General analysis strategy: LHCb experiment

General analysis strategy: signal selection

- Triggers: mainly muon and dimuon lines (\u03c6_{TRIG} \u22070-90%)
- Particle Identification: μ for final states, h for control channels (ex. ϵ_{μμ} ~98%, ϵ_{π→μ} ~0.6%)
- Meson mass requirements (ex. σ(m)_{B⁰_s→μ⁺μ⁻} ~ 26 MeV/c²)
- Vertex criteria: tracks fitting, pointing, separation (σ_{vertex} ~16μm in x,y)

Primary vertex (PV) Flight distance (8 mm) Impact parameter (IP)

Backgrounds rejection

- Combinatorial background \rightarrow MultiVariate Analysis: real leptons in the events, not coming from the same meson-decays MVA classifier is typically a Boosted Decision Tree (BDT)
- "Peaking" backgrounds \rightarrow MC/data-driven studies exclusive decays with final state hadron(s) misld. as muon ($h \rightarrow \mu$) might peak in the signal search window

General analysis strategy: \mathcal{BR} estimation

> Normalisation on a channel with same topology, to reduce uncertainties

$$\mathcal{BR} (signal) = \frac{N_{signal}}{N_{norm}} \frac{\epsilon_{signal}}{\epsilon_{norm}} \cdot \mathcal{BR} (norm)$$

Efficiencies ϵ from MC, data-driven corrections.

 Blind approach: signal region examined only after analysis and strategy for systematics extraction are optimised

- Limit determination: CL_s method for compatibility of observation with expectations, significance (typically set using CL_b estimator) [J. Phys. G28 2693]
- > Branching fraction estimation: unbinned likelihood fit to mass spectra

$D^0 ightarrow \mu^+ \mu^- ightarrow R$ -parity violating models

$D^0 \to \mu^+ \mu^-$

Analysis of 0.9 fb^{-1} at LHCb (2011)

- Use D^0 from D^{*+} decays $(D^{*+} \rightarrow D^0 (\rightarrow \mu^+ \mu^-) \pi^+)$
- ▶ Main backgrounds: combinatorial + peaking from $D^0 \rightarrow h^+h^-$ (mainly double misidentified $D^0 \rightarrow \pi\pi$)
- \blacktriangleright Normalisation on $D^0 o \pi^+\pi^-$
- ▶ Unbinned extended maximum likelihood fit in 2D $(m(\mu\mu), \Delta m = m_{(D^{*+})} m_{(D^0)})$

$D^0 ightarrow \mu^+ \mu^-$: best new limit

SM: strong GIM suppressions, $\mathcal{BR}_{SM} \sim 6\cdot 10^{-11}$ at 90%C.L. [Phys. Rev. D66 (2002)] Best experimental limit (Belle) was: $\mathcal{BR}_{exp} < 1.4\cdot 10^{-7}$ at 90% C.L.

Observation compatible with expected background, limit extraction with CL_s

Still orders of magnitude larger than SM, paper in preparation with improved analysis.

LHCb

LHCb analyses discussed

$K_S \rightarrow \mu^+ \mu^-$

Analysis of 1 fb⁻¹ at LHCb (2011)

- ▶ Normalisation on $K_S^0 \to \pi^+\pi^-$
- ▶ Combinatorial background (exponential) + peaking $K_S^0 \rightarrow \pi^+\pi^-$ with double misld (power law function)

$K_S \rightarrow \mu^+ \mu^-$: world's best limit.

SM expectation: $\mathcal{BR}_{SM} = (5.1 \pm 1.5) \cdot 10^{-12}$ [NuPh B366(1991)189] [JHEP 0401(2004)009] Best experimental limit (1973) was: $\mathcal{BR}_{exp} < 3.2 \cdot 10^{-7}$ at 90% C.L.

Results: candidates consistent with expected background, limit extraction

Factor 30 improvement on limit!

LHCb

LHCb analyses discussed

$\rightarrow \mu^+ \mu^- \mu^+ \mu^-$

SM: \mathcal{BR} of non-resonant mode $(B^0_q o \mu^+ \mu^- \gamma^* (\mu^+ \mu^-)) < 10^{-10}$

[Phys.Rev. D70(2004)114028]

No experimental limits before this analysis.

- Selection to maximise signal and remove resonant mode $B^0_{
 m c}
 ightarrow J/\psi \phi$
- Normalisation on $B^0 \to J/\psi(\to \mu\mu)K^{*0}(\to K\pi)$

- > Result: 1 event observed in B_d^0 window, 0 in B_s^0 . Consistent with expected background
 - Limits at 95(90)% C.L.:

$$\mathcal{BR} \; (B_s o 4\mu) < 1.3 \; (1.0) \; \cdot 10^{-8} \ \mathcal{BR} \; (B_d o 4\mu) < 5.4 \; (4.3) \; \cdot 10^{-8}$$

$$D^{0} \rightarrow \mu^{+}\mu^{-}$$

$$K_{S}^{0} \rightarrow \mu^{+}\mu^{-}$$

$$B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-} \rightarrow \text{Extended Higgs sector models}$$

$$Extended \text{ Higgs vector models}$$

NI

$B^0_{(s)} ightarrow \mu^+ \mu^-$: SM and beyond

SM prediction

- FCNC (Z-penguin, W-box) + helicity suppressions
- Effective calculation with QCD correction [Buras et al., arXiv:1208.0934]:

$$\begin{array}{l} \mathcal{BR} \ (B^0 \to \mu^+ \mu^-)_{SM} = \textbf{(1.07} \pm \textbf{0.10}) \cdot \textbf{10}^{-10} \\ \mathcal{BR} \ (B^0_s \to \mu^+ \mu^-)_{SM} = (3.23 \pm 0.27) \cdot \textbf{10}^{-9} \end{array}$$

- Time integrated correction, accounting for the finite width $\Delta\Gamma(B_s)$ [LHCb-CONF-2012-002] [De Bruyn et al., PRL 109, 041801]:

$$\mathcal{BR} \ (B_s^0 o \mu^+ \mu^-)_{SM}^{\Delta\Gamma} = (3.54 \pm 0.30) \cdot 10^{-9}$$

Beyond SM

$$\mathcal{BR} \propto |C_s - C'_s|^2 (1 - \frac{4m_{\mu}^2}{m_{B_s}^2}) + |(C_P - C'_P) + \frac{2m_{\mu}}{m_{B_s}^2} (C_{10} - C'_{10})|^2$$

$B^0_{(s)} ightarrow \mu^+ \mu^-$: SM and beyond

SM prediction

- FCNC (Z-penguin, W-box) + helicity suppressions
- Effective calculation with QCD correction [Buras et al., arXiv:1208.0934]:

$$\begin{array}{l} \mathcal{BR} \ (B^0 \to \mu^+ \mu^-)_{SM} = \textbf{(1.07} \pm \textbf{0.10)} \cdot \textbf{10}^{-10} \\ \mathcal{BR} \ (B^0_s \to \mu^+ \mu^-)_{SM} = \textbf{(3.23} \pm \textbf{0.27)} \cdot \textbf{10}^{-9} \end{array}$$

- Time integrated correction, accounting for the finite width $\Delta\Gamma(B_s)$ [LHCb-CONF-2012-002] [De Bruyn et al., PRL 109, 041801]:

$$\mathcal{BR} \ (B_s^0 o \mu^+ \mu^-)_{SM}^{\Delta\Gamma} = (3.54 \pm 0.30) \cdot 10^{-9}$$

Beyond SM

$$\mathcal{BR} \propto |C_s - C'_s|^2 (1 - \frac{4m_\mu^2}{m_{B_s}^2}) + |(C_P - C'_P) + \frac{2m_\mu}{m_{B_s}^2} (C_{10} - C'_{10})|^2$$

New particles & diagrams: SM coupling and NP couplings

$B^0_{(s)} ightarrow \mu^+ \mu^-$: SM and beyond

SM prediction

- FCNC (Z-penguin, W-box) + helicity suppressions
- Effective calculation with QCD correction [Buras et al., arXiv:1208.0934]:

$$\begin{array}{l} \mathcal{BR} \ (B^0 \to \mu^+ \mu^-)_{SM} = \textbf{(1.07} \pm \textbf{0.10)} \cdot \textbf{10}^{-10} \\ \mathcal{BR} \ (B^0_s \to \mu^+ \mu^-)_{SM} = \textbf{(3.23} \pm \textbf{0.27)} \cdot \textbf{10}^{-9} \end{array}$$

- Time integrated correction, accounting for the finite width $\Delta\Gamma(B_s)$ [LHCb-CONF-2012-002] [De Bruyn et al., PRL 109, 041801]:

$$\mathcal{BR} \ (B_s^0 o \mu^+ \mu^-)_{SM}^{\Delta\Gamma} = (3.54 \pm 0.30) \cdot 10^{-9}$$

Beyond SM

$$\mathcal{BR} \propto |C_s - C'_s|^2 (1 - \frac{4m_{\mu}^2}{m_{B_s}^2}) + |(C_P - C'_P) + \frac{2m_{\mu}}{m_{B_s}^2} (|C_{10} - C'_{10}|)$$

New particles & diagrams: SM coupling and NP couplings

Axial contributions suppressed with respect to (pseudo-)scalar

$$\Rightarrow B^0_{(s)} \rightarrow \mu^+ \mu^-$$
 sensitive to NP in the scalar sector.

)|²

$\overline{B^0_{(s)}} ightarrow \mu^+ \mu^-$: 2012 analysis

Signal/background classification

- ▶ Selection: pairs of μ^+ μ^- , displaced vertex, $m(\mu\mu) \in [4900\text{-}6000] \text{MeV}/c^2$
- **BDT**: discrimination of combinatorial background, real μ 's from $b\bar{b} \rightarrow \mu\mu X$
 - trained on MC samples
 - calibrated on data (exclusive $B^0 \rightarrow hh$ for signal, dimuon mass sidebands for bkgd)

Signal Invariant Mass (IM)

- Pdf: Crystal ball function
- Peak position: from exclusive B⁰ → hh decays (h=K, π)
- Resolution: from interpolation of dimuon resonances $(J/\psi, \phi, \Upsilon, ...)$, in agreement with exclusive $B^0 \rightarrow hh$ result

Normalisation on two independent channels: $B^{\pm} \rightarrow J/\psi K^{\pm}$ and $B^0 \rightarrow K\pi$, averaged. Ratio of *b*-fragmentation fractions $f_s/f_d = 0.256 \pm 0.020$ [LHCb-PAPER-2012-037]

$B^0_{(s)} ightarrow \mu^+ \mu^-$: backgrounds for 2012 analysis

Combinatorial	contaminates mass windows exponential model from sidebands interpolation
$B^0 ightarrow hh$, double misld	peaking in mass windows (particularly B_d) shape from MC, folded with misld from data
Exclusive semileptonic decays, single $h \rightarrow \mu$ misld	negligible in mass windows; some some included in the sidebands fit, to avoid an interpolation bias
	shape from MC, normalisation with misld from data

Exclusive backgrounds dedicated study (improved in 2012):

$$B_d^0 \to \pi^- \mu^+ \nu$$
$$B_d^0 \to K^- \mu^+ \nu$$
$$\Lambda_b^0 \to \rho \mu^- \nu$$
$$B^{0(+)} \to \pi^{0(+)} \mu^+ \mu^-$$
$$B_c^+ \to J/\psi(\mu^+ \mu^-) \mu^+ \nu$$

LHC

$B^0_{(s)} ightarrow \mu^+ \mu^-$: 2012 blind data [LHCb-PAPER-2012-043, arXiv:1211.2674]

Mass sidebands fit for 8 TeV data, 7 BDT bins:

All background pdf's are included in the global fit of the blind data sidebands:

 $B^0_d o \pi^- \mu^+
u_\mu \quad B^{0(\pm)}_{d(\mu)} o \pi^{0(\pm)} \mu^+ \mu^- \quad B^0_{(s)} o h^+ h^-$ Total

Fit to unblinded 8 TeV data, 7 BDT bins:

$B^0_{(s)} o \mu^+ \mu^-$: Combined results 2011+2012 (1.0+1.1fb⁻¹)

NB: analysis on 2011 data repeated with 2012 strategy.

Observations vs Expectations.

 observed candidates in 2012 dataset, binned [IM, BDT] plane (B_d window, B_s window):

▶ CL_s method to assess significance.

$B^0_{(s)} o \mu^+ \mu^-$: Combined results 2011+2012 (1.0+1.1fb^{-1})

NB: analysis on 2011 data repeated with 2012 strategy.

Observations vs Expectations.

 observed candidates in 2012 dataset, binned [IM, BDT] plane (B_d window, B_s window):

comparison of N_{obs} with NSM_{exp} and N^{bkd}_{exp}
 CL_s method to assess significance.

$B^0 \rightarrow \mu^+ \mu^-$: No excess.

Combined 2011+2012: new world best limit! $\mathcal{BR} (B^0 \to \mu^+ \mu^-)_{exp} < 7.1 \cdot 10^{-10} \text{ at } 95\% \text{ C.L.}$ $\mathcal{BR} (B^0 \to \mu^+ \mu^-)_{obs} < 9.4 \cdot 10^{-10} \text{ at } 95\% \text{ C.L.}$

In the B_s mass window, at high BDT...

$B^0_{(s)} o \mu^+ \mu^-$: Combined results 2011+2012 (1.0+1.1fb^{-1})

$B_s^0 \to \mu^+ \mu^-$ excess!

$B^{0}_{(s)} \rightarrow \mu^{+} \mu^{-}$: Combined results 2011+2012 (1.0+1.1*fb*^{-1})

 $\mathcal{BR}~(B^0_s o \mu^+ \mu^-) = ($ **3.2** $^{+1.4}_{-1.2}~(\text{stat})~^{+0.5}_{-0.3}~(\text{syst})~) \cdot 10^{-9}$

Summary

Rare decays: interesting probes of new physics.

LHCb analyses presented, common general strategy (limits at 95% C.L.):

 $\begin{array}{ll} & - \ D^0 \to \mu^+ \mu^- \colon \mathcal{BR} < {\bf 1.3} \cdot {\bf 10}^{-8} & \text{new} \\ & \mathcal{K}^0_S \to \mu^+ \mu^- \colon \mathcal{BR} < {\bf 11} \cdot {\bf 10}^{-9} & \text{new} \\ & \mathcal{B}^0_{(s)} \to \mu \mu \mu \mu \colon \mathcal{BR} < {\bf 1.3} \ ({\bf 5.4}) \cdot {\bf 10}^{-8} \\ & \mathcal{B}^0 \to \mu^+ \mu^- \colon \mathcal{BR} < {\bf 9.4} \cdot {\bf 10}^{-10} & \text{new} \\ & \mathcal{B}^0_s \to \mu^+ \mu^- \colon \mathcal{BR} = ({\bf 3.2}^{+1.5}_{-1.2}) \cdot {\bf 10}^{-9} \end{array}$

new world best limit new world best limit first limits new world best limit first evidence!

More on LHCb rare searches on Thursday (Harnew)

▶ What next?

Experimental bounds closing in on the SM \mathcal{BR} 's, but still space for NP! New variables to investigate, ex: ratio of \mathcal{BR} $(B_s^0 \to \mu^+\mu^-)/\mathcal{BR}$ $(B^0 \to \mu^+\mu^-)$,effective lifetime...

Backup

Impact of $B^0_s o \mu^+ \mu^-$ result on NP [MasterCode webpage]

- MasterCode: Markov Chain MonteCarlo method to construct a global likelihood function that receives contributions from full set of electroweak precision observables
- \blacktriangleright A SM-like $\mathcal{BR}~(B^0_s\to\mu^+\mu^-)$ is expected in constrained SUSY models, as CMSSM or NUHM1
- ▶ new \mathcal{BR} $(B_s^0 \to \mu^+ \mu^-)$ result is still quite consistent with SUSY
- the favoured regions in the parameter space of these models do not change significantly after the inclusion of the new constraint

Combination of \mathcal{BR} ($B_s^0 \rightarrow \mu^+ \mu^-$) measurements: ATLAS (Winter 2012), CDF (ASPEN 2012), CMS (Winter 2012), LHCb (HCP 2012), and combined likelihood.

More on LHCb: VELO IP resolution

IP resolution < 35 μm for tracks with p>1 GeV/c

More on LHCb: VELO Vertex resolution

Primary Vertex resolution in (x, y):

Primary Vertex resolution in *z*:

For a 25-tracks vertex: in transverse plane = 13 μ m, in z-direction = 71 μ m

Muon Identification

- isMuon requirement:
 - track extrapolated from tracking to muon stations
 - look for (muon station) hits in a defined field of interest (FOI)
 - combination of requirements on track p and number of hits found
- muon hypothesis test:
 - information from muon system, RICH and CALO combined to build a muon likelihood $L(\mu)$ and a non-muon one L(K), $L(\pi)$
 - global DLL ($\Delta LogL$) used as discriminating variable for the muon test

Calibration and efficiencies determined on data (tag&probe methods): $J/\psi \rightarrow \mu\mu$, $D \rightarrow K\pi$, $K_s \rightarrow \pi\pi$, etc

Ex, $B^0_{(s)} \to \mu^+ \mu^-$ analysis: simultaneous cuts of $DLL(\mu - \pi) >$ -5 and $DLL(K - \pi) <$ 10 reduce (by a factor \sim 5) the rate of $B \to hh$ events with double hadron misidentification

More on $B^0_{(s)} ightarrow \mu^+ \mu^- \mu^+ \mu^-$

- In SuSy extensions of SM, goldstino superpartners (S and P sgoldstinos) can be light enough for emerging in decays of SM particles [arXiv:1112.5230v2]
- Sgoldstino coupling to SM fields are prop to the SuSy breaking parameters
- > Prominent signature of sgoldstino pair production is 2 muon pairs!
- $\blacktriangleright \ \mathcal{BR} \ (B_s \to SP < 10^{-4})$
- ▶ LHCb search sensitive to $B_s \rightarrow SP$ with m(P) similar to that reported by HyperCP [PRL 94, 021801]

$B^0_{(s)} o \mu^+ \mu^-$: Status at today

Status at June 2012 (LHC):

$$\mathcal{BR} \ (B_s^0 \to \mu^+ \mu^-) < 4.2 \cdot 10^{-9} \text{ at } 95\% \text{ C.L.}$$

 $\mathcal{BR} \ (B^0 \to \mu^+ \mu^-) < 8.1 \cdot 10^{-10} \text{ at } 95\%$
C.L.

[LHC combination note]

[Straub, Moriond EWK 2012]

More on $B^0_{(s)} \rightarrow \mu^+ \mu^-$: selection

see [CERN seminar Nov12]

After selection:

- pairs of opposite charged muons
- secondary vertex displaced
- $m(\mu\mu)$ in the range [4900-6000] MeV/c²
- loose cut on MVA discriminant

Signal/background separation: BDT

Discrimination of combinatorial background (2 real muons from $b\bar{b} \rightarrow \mu\mu X$)

- 9 input variables, uncorrelated with inv mass
- training on MC signal and background samples
- ▶ signal shape (calibration) from exclusive $B^0 \rightarrow hh$ channels
- background shape from dimuon mass sidebands

More on $B^0_{(s)} ightarrow \mu^+ \mu^-$: Invariant Mass

Signal invariant mass

- Pdf: Crystal ball function
- ▶ Peak position: from exclusive $B^0 \rightarrow hh$ decays (h=K, π)
- ▶ Resolution: from interpolation of dimuon resonances $(J/\psi, \phi, \Upsilon, ...)$ and from exclusive $B^0 \rightarrow hh$; results in agreement.

$$\begin{aligned} \sigma(B^0) &= (24.63 \pm 0.13_{stat} \pm 0.36_{syst}) MeV/c^2 \\ \sigma(B_s^0) &= (25.04 \pm 0.18_{stat} \pm 0.36_{syst}) MeV/c^2 \end{aligned}$$

LHCL

More on $B^0_{(s)} \rightarrow \mu^+ \mu^-$: Normalisation

$$\mathcal{BR}_{B_{(\mathfrak{s})}^{0} \rightarrow \mu^{+}\mu^{-}} = \mathcal{BR}_{\mathsf{norm}} \underbrace{\mathsf{RECO}}_{\substack{\mathsf{RECO}\\ B_{(\mathfrak{s})}^{0} \rightarrow \mu^{+}\mu^{-}}} \underbrace{\mathsf{chorm}}_{\substack{\mathsf{chorm}\\\mathsf{SEL}/\mathsf{RECO}\\\mathsf{B}_{(\mathfrak{s})}^{0} \rightarrow \mu^{+}\mu^{-}}} \underbrace{\mathsf{chorm}}_{\substack{\mathsf{fnorm}\\\mathsf{SEL}/\mathsf{RECO}\\\mathsf{B}_{(\mathfrak{s})}^{0} \rightarrow \mu^{+}\mu^{-}}} \underbrace{\mathsf{chorm}}_{\substack{\mathsf{fnorm}\\\mathsf{SB}_{(\mathfrak{s})}^{0} \rightarrow \mu^{+}\mu^{-}}} \underbrace{\mathsf{fnorm}}_{\substack{\mathsf{fnorm}\\\mathsf{fg}_{\mathfrak{g}}^{0}}} \underbrace{\mathsf{fnorm}}_{\mathsf{Norm}} = \alpha \cdot \mathsf{N}_{\mathsf{B}_{(\mathfrak{s})}^{0} \rightarrow \mu^{+}\mu^{-}}}$$

Normalisation strategy

- \blacktriangleright two independent channels: $B^\pm o J/\psi K^\pm$ and $B^0 o K\pi$, averaged
- selection and reconstruction efficiencies from MC with some data inputs:
 - IP smearing to make MC more similar to data
 - Muon ID efficiency from data
 - Invariant mass cut efficiency corrected for data resolution
 - Tracking efficiency corrected from data
 - Trigger efficiency from data
- stability of the yields N_{norm} checked throughout the year dataset
- > ratio of *b*-fragmentation fractions from last LHCb result: $f_s/f_d = 0.256 \pm 0.020$ $f_s/f_d p_T$ dependence checked on data 2012, stable within 1.5 σ

More on $B^0_{(s)} \rightarrow \mu^+ \mu^-$ backgrounds: $B \rightarrow hh$ double misld

- ▶ misld probability $(\epsilon_{hh \to \mu\mu})$ for kaons and pions with tag&probe from $D^+ \to D^0(\to K\pi^+)\pi^+$, in p and p_T bins
- total number of misld decays extracted from number of triggered ones with
 misld probability correction
 - trigger correction (difference between $B^0_{(s)} \rightarrow hhand \ B^0_{(s)} \rightarrow \mu^+\mu^-$ triggers)
- ▶ Invariant Mass shape extracted from data, cross-checked with $B^0_{(s)} \rightarrow hh$ exclusive
- BDT shape corrected for a BDT-dependent misld rate

