## Search for dark-sector Higgs and gauge bosons at BABAR



### Alberto Lusiani

INFN and Scuola Normale Superiore di Pisa (on behalf of the BABAR collaboration)



Discrete 2012 Third Symposium on Prospects in the Physics of Discrete Symmetries Lisbon, 3-7 December 2012





Astrophysical observations of electron and/or positron excesses may be explained by Dark Matter models including a "dark" gauge boson with mass arount 1 GeV, which decays to leptons

- O. Adriani et al. (**PAMELA**), Observation of an anomalous positron abundance in the cosmic radiation
  - ► Nature 458:607-609,2009, arXiv:0810.4995
- J. Chang et al. (ATIC), An excess of cosmic ray electrons at energies of 300-800 GeV
  - Nature 456, 362 (2008)
- A.A. Abdo et al. (Fermi LAT), Measurement of the Cosmic Ray e+ plus e- spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope
  - Phys.Rev.Lett.102:181101,2009, arXiv:0905.0025.
- **HESS** Collab., Probing the ATIC peak in the cosmic-ray electron spectrum with H.E.S.S
  - Astron.Astrophys.508:561, 2009, arXiv:0905.0105



### **Dark-sector New Physics models, main features**

- new dark sector with a  $U(1)_{DARK}$  gauge group, with a O(GeV) mass gauge photon (A',  $B_{\mu\nu}$ )
- interaction with Standard Model fields thru **kinetic mixing** term  $\epsilon F^{\mu\nu}B_{\mu\nu}$
- dark photon coupling to SM fermions:  $\alpha' = \epsilon^2 \alpha$
- TeV-scale dark matter  $\rightarrow$  dark photon pair  $\rightarrow$  leptons
  - ▶ if m(A') < 2 GeV then dark photon decays to electrons and muons
- poorly constrained and worth exploring
- some models include a dark Higgs (which gives mass to the dark photon)



## Dark photons and dark Higgs bosons may be produced at B-factories

$$\blacklozenge e^+e^- \to \gamma A', \quad A' \to f^+f^-$$

$$\bullet \quad e^+e^- \to A'A', \quad A' \to f^+f^-$$

$$\bullet \quad e^+e^- \to A'h', \quad h' \to A'A', \quad A' \to f^+f^-$$

• h' = dark-sector Higgs boson

- B.McElrath, Invisible Quarkonium Decays as a Sensitive Probe of Dark Matter, PRD 72 (2005) 103508
- Y.Nomura, J.Thaler, Dark Matter through the Axion Portal, PRD 79 (2009) 075008
- B.Batell, M.Pospelov, A.Ritz, Probing a Secluded U(1) at B-factories, PRD 79 (2009) 115008
- N.Arkani-Hamed et al., A Theory of Dark Matter, PRD 79 (2009) 015014



4

## **Dark-photon branching fractions and constraints**

dark photon branching fractions B.Batell, M.Pospelov, A.Ritz, PRD 79 (2009) 115008



red line: parameters required to explain  $(g-2)_{\mu}$  anomaly M. Pospelov, PRD 80 (2009) 095002 Y(3S): re-intepretation of Aspen 2009 *BABAR* prelim. light Higgs search Y(3S)  $\rightarrow A'\gamma$ ,  $A' \rightarrow \mu^{+}\mu^{-}$ J.D. Bjorken et al., PRD 80 (2009) 075018 Constraints in  $\epsilon = \sqrt{\alpha'/\alpha} - m(A')$  plane B.Echenard, Adv. in HEP, art.id 514014 (2012)





## **BABAR** collected ~ 533 fb<sup>-1</sup> of $e^+e^-$ collisions around the Y(4S) in 1999–2008



### **BABAR** data sample contains

~470 x 10<sup>6</sup>  $\Upsilon(4S)$ ~120 x 10<sup>6</sup>  $\Upsilon(3S)$  (10x Belle, 25x CLEO) ~100 x 10<sup>6</sup>  $\Upsilon(2S)$  (10x CLEO) ~ 18 x 10<sup>6</sup>  $\Upsilon(1S)$  from  $\Upsilon(2S) \rightarrow \pi^+\pi^-\Upsilon(1S)$ 



### Search for Dark gauge Boson in BABAR arXiv:0908.2821

 $\begin{array}{c} e^{-\epsilon^{2}} \alpha_{\mathsf{D}} & \ell^{-} \\ A'^{(*)} & W_{D} \\ e^{+} & W_{D} \\ \ell^{-} \end{array}$ 

 $e^{+}e^{-} \rightarrow A^{\prime \star} \rightarrow W W^{\prime}, \ W^{(\prime)} \rightarrow e^{+}e^{-}, \ \mu^{+}\mu^{-}$ 



- The simplest extension to a non-Abelian case is SU(2)xU(1), which has 4 bosons: A', W, W' and W''
- $\Rightarrow$  Can produce a pair of dark bosons though an off-shell A'. Process suppressed only by  $α_n ε^2$
- Search for two dileptonic resonances with similar mass



### Search for Dark gauge Boson in BABAR arXiv:0908.2821



7

Scan mass spectrum for signal (507 points)

**CL** distribution



 $e^+e^-\frac{23}{11}$   $W_pW'_{p11}$  4l cross-section upper limits

Average limit over many bins

 $3\sigma$  limit, including trial factors



### Search for Dark gauge Boson in BABAR arXiv:0908.2821





Limits on  $\epsilon^2$  < 10<sup>-7</sup> – 10<sup>-3</sup> assuming  $\alpha_{_D}$ =  $\alpha_{_{em}}$ 

Expect limits at roughly the same order of magnitude for  $m_w - m_w >> 0$ 



### Search for Dark Higgs Boson in BABAR

- ⇒ Dark photon mass is generated via the Higgs mechanism, adding a dark Higgs boson (h') to the theory.
- A minimal scenario has a single dark photon and a single dark Higgs boson.
- ⇒ The dark Higgs mass could be at the GeV scale
- ⇒ The Higgs-strahlung process

 $e^{\scriptscriptstyle +}e^{\scriptscriptstyle -} \to A'^* \to h' \: A'$  ,  $h' \to A' \: A'$ 

is very interesting, as it is **only suppressed by**  $\epsilon^2$  and is expected to have a **very small background**.





Focus on prompt decays  $m_h > 2m_A$ 

 $\alpha_{\rm D} = {\rm g_{\rm D}}^2 / 4\pi$ g<sub>D</sub> is the dark sector gauge coupling Higgs decay topology

B. Batell et al., PRD 79 (2009) 1150 R. Essig et al., PRD 80 (2009) 0150



### Search for Dark Higgs Boson in BABAR PRL 108 (2012) 2118

**Fully reconstructed** 

 $e^+e^- \rightarrow h' A', h' \rightarrow A' A'$ with  $A' \rightarrow e^+e^-, \mu^+\mu^-, \pi^+\pi^-$ 

#### Fully reconstructed signal

⇒ Three dark photons fully reconstructed

**Modes included** 

 $\begin{array}{l} \rightleftharpoons e^{+}e^{-} \rightarrow \left( I^{+}I^{-} \right) \left( I^{+}I^{-} \right) \left( I^{+}I^{-} \right) \ I=e,\mu \\ \rightleftharpoons e^{+}e^{-} \rightarrow \left( I^{+}I^{-} \right) \left( I^{+}I^{-} \right) \left( \pi^{+}\pi^{-} \right) \\ \rightleftharpoons e^{+}e^{-} \rightarrow \left( I^{+}I^{-} \right) \left( \pi^{+}\pi^{-} \right) \left( \pi^{+}\pi^{-} \right) \end{array}$ 

#### Selection

- $\Rightarrow$  6 tracks with an invariant mass m<sub>tot</sub> > 0.95  $\sqrt{s}$
- ⇒ apply particle identification
- $\Rightarrow$  cosine helicity angle of A'  $\rightarrow e^+e^-$  candidates < 0.9
- ⇒ three dark photon candidates have similar mass

**Partially reconstructed** 

$$\begin{array}{c} e^{+}e^{-} \rightarrow h' \; A_{1}\;',\; h' \rightarrow A_{2}\;' \; A_{3}\;' \\ A'_{1,2}\; \rightarrow e^{+}e^{-},\; \mu^{+}\mu^{-},\;\; A'_{3}\; \rightarrow X \quad + \; perm. \end{array}$$

### Partially reconstructed signal

- ⇒ In the high mass region (m<sub>A</sub> > 1.2 GeV), the decay of the dark photon is dominated by A'  $\rightarrow q\overline{q}$
- $\rightleftharpoons$  Measure 2 A' decaying to leptons and 1 A'  $\rightarrow q\overline{q}$
- $\Rightarrow$  Assign recoiling system to A<sub>3</sub>, P<sub>3</sub> = P<sub>ee</sub> P<sub>1</sub> P<sub>2</sub>

#### **Modes included**

 $\Rightarrow e^+e^- \rightarrow (I^+I^-) \ (\mu^+\mu^-) + X \ \text{ where X is not } I^+I^- / \ \pi^+\pi^-$ 

#### Selection

- $\Rightarrow$  apply particle identification for A'  $\rightarrow$  I<sup>+</sup>I<sup>-</sup> decays
- $\Rightarrow$  cosine helicity angle of A'  $\rightarrow e^+e^-$  candidates < 0.9
- ⇒ three dark photon candidates have similar mass



### Search for Dark Higgs Boson in BABAR PRL 108 (2012) 2118

- Six events are selected from the full BABAR dataset (~500 fb<sup>-1</sup>)
- ⇒ Three entries for each event, corresponding to the three possible assignments of the h' → A'A' decay
- - wrong-sign combinations, e.g.

 $e^+e^- \rightarrow \left(e^+e^+\right) \left(e^-e^-\right) \left(\mu^+\mu^-\right)$ 

- sidebands from final sample
- rate for 6 leptons ~ 100x rate for  $4\pi$ +2l above 1.5 GeV





No events with 6 leptons, consistent with the pure background hypothesis



### Search for Dark Higgs Boson in BABAR PRL 108 (2012) 2118

Limit on the cross section  $e^+e^- \rightarrow h' A', h' \rightarrow A' A'$ in the regime  $m_{\mu} > 2 m_{\Delta}$ 

- $\Rightarrow$  Scan the m<sub>h</sub> vs m<sub>A</sub> plane, Bayesian limit with uniform prior in cross-section
- ⇒ Limits from 10 to ~100 ab

Extract limits<sup>1</sup> on the product  $\alpha_{D} \epsilon^{2}$ 

$$\sigma_{e^+e^- \to Vh'} = \frac{\pi \alpha \alpha' \kappa^2}{3s} \left(1 - \frac{m_V^2}{s}\right)^{-2} \sqrt{\lambda \left(1, \frac{m_{h'}^2}{s}, \frac{m_V^2}{s}\right)} \\ \left[\lambda \left(1, \frac{m_{h'}^2}{s}, \frac{m_V^2}{s}\right) + \frac{12m_V^2}{s}\right]$$

⇒ Limits down to a few x 10<sup>-10</sup>



3. Batell, M. Pospelov and A. Ritz, Phys.Rev.D79:115008,2009.

Discrete 2012 - Third Symposium on Prospects in the Physics of Discrete Symmetries, Lisbon, 3-7 Dec. 2012 12







**BABAR** light Higgs searches that can be interpreted as dark photon searches



Search for N-MSSM CP-odd Light Higgs in  $\mu^+\mu^-$  in BABAR PRL 103 (2009) 081803

can be interpreted as  $e^+e^- \rightarrow \gamma A'$ ,  $A' \rightarrow \mu^+\mu^-$ 

use  $99.10^6$  Y(2S) and  $122.10^6$  Y(3S) events

limits on  $B(Y(nS) \rightarrow \gamma A') \cdot B(A' \rightarrow \mu^+ \mu^-)$ limits on effective coupling  $f_Y^2 \cdot B(A' \rightarrow \mu^+ \mu^-)$ 

 $\frac{\Upsilon(nS) \to \gamma A'}{\Upsilon(nS) \to \ell^+ \ell^-} = \frac{f_{\Upsilon}^2}{2\pi\alpha} \left( 1 - \frac{m_{A'}}{m_{\Upsilon(nS)}} \right)$ 





Discrete 2012 - Third Symposium on Prospects in the Physics of Discrete Symmetries, Lisbon, 3-7 Dec. 2012 15



# Search for $e^+e^- \rightarrow Y(2S, 3S) \rightarrow \pi^+\pi^-Y(1S)$ , $Y(1S) \rightarrow \gamma A^0$ , $A^0 \rightarrow \mu^+\mu^-$ new

- $A^0$  = low-mass NMSSM Higgs, can be reinterpreted as as dark photon A'
- smaller  $\Gamma_{Y(1S)} \rightarrow \text{larger } B(Y(1S) \rightarrow \gamma A^0) \rightarrow \text{better sensitivity}$
- tagging  $Y(2S, 3S) \rightarrow \pi^+\pi^-Y(1S)$   $\longrightarrow$  more bkg suppression
- use sample of  $93 \cdot 10^6$  Y(2S) and  $117 \cdot 10^6$  Y(3S) events
- select events with 4 tracks  $\pi^+$ ,  $\pi^-$ ,  $\mu^+$ ,  $\mu^-$  and one photon with  $E_{\gamma} > 200 \text{ MeV}$ 
  - muon-id required for at least one muon
- constrained fit with event  $\sqrt{s}$ , m(Y(2S, 3S), m(Y(1S)))
- full simulation, data control samples, sidebands used for estimating efficiency and bkg
- search for  $A^0$  peak in 4585 ~half-resolution steps for  $0.212 \le m_{A^0} \le 9.20 \,\text{GeV}/c^2$ ,
- ♦  $B(Y(1S) \rightarrow \gamma A^{0}) \cdot B(A^{0} \rightarrow \mu^{+}\mu^{-}) < (0.28-9.7) \times 10^{-6}$  at 90% CL
- effective coupling can be defined with  $\frac{Y(nS) \rightarrow \gamma A'}{Y(nS) \rightarrow \ell^+ \ell^-} = \frac{f_Y^2}{2\pi \alpha} \left(1 \frac{m_{A'}}{m_{Y(nS)}}\right)$
- $f_v^2 \cdot B(A^0 \to \mu^+ \mu^-) < (0.29-40) \times 10^{-6}$  at 90% CL
- 2–3 times better than previous 2009 analysis for  $m_{A^0} \le 1.2 \,\text{GeV}/c^2$



# Search for $e^+e^- \rightarrow Y(2S, 3S) \rightarrow \pi^+\pi^-Y(1S)$ , $Y(1S) \rightarrow \gamma A^0$ , $A^0 \rightarrow \mu^+\mu^-$ new





# Search for $e^+e^- \rightarrow Y(2S) \rightarrow \pi^+\pi^-Y(1S)$ , $Y(1S) \rightarrow \gamma A^0$ , $A^0 \rightarrow \tau^+\tau^-$ new

- $A^0$  = low-mass NMSSM Higgs, can be reinterpreted as dark photon A'
- use sample of  $(98.3 \pm 0.9) \cdot 10^6 e^+e^-$  collisions at the Y(2S) peak
- select events with:
  - four tracks: π<sup>+</sup>π<sup>-</sup> and two 1-prong tau decay products at least one tau 1-prong decay must be a lepton
  - one photon from Y(2S) decay, plus extra photons from tau-decay  $\pi^0$  and accelerator bkg
- Y(1S) and A<sup>0</sup> masses reconstructed from event  $\sqrt{s}$ ,  $\pi^+\pi^-$  momenta, Y(1S)-decay photon momentum
- signal efficiency estimated with full simulation
- expected bkg estimated with full simulation, data control samples, sidebands
- significance assessed with toy MC simulated experiments with full simulation
- fit for  $m(A^0)$  peak for 3.6 GeV <  $m(A^0)$  < 9.2 GeV in 201 steps (half resolution): no significant signal
- ♦  $B(Y(1S) \rightarrow \gamma A^{0}) \cdot B(A^{0} \rightarrow \tau^{+}\tau^{-}) < (0.9-13)\cdot 10^{-5}$  at 90% CL for 3.6 GeV <  $m(A^{0}) < 9.2$  GeV
- upper limits combined with former analysis  $Y(3S) \rightarrow \gamma A^0$ ,  $A^0 \rightarrow \tau^+ \tau^-$ , PRL 103 (2009) 181801





90% CL limits on 90% CL limits on  $b - A^0$  Yukawa coupling  $g_{\mu}^2$  $B(Y(1S) \rightarrow \gamma A^0) \cdot B(A^0 \rightarrow \tau^+ \tau^-)$  $\frac{\Upsilon(nS) \to \gamma A^0}{\Upsilon(nS) \to \ell^+ \ell^-} = \frac{g_b^2 G_F m_b^2}{\sqrt{2}\pi\alpha} \mathcal{F}_{QCD} \left(1 - \frac{m_{A^0}}{m_{\Upsilon(nS)}}\right)$ (this analysis only) also combined with PRL 103 (2009) 181801 BF UL @ 90% C.L.  $g_b^2 \times B(A^0 \rightarrow \tau \tau) UL @ 90\% C.L.$ -- BaBar Y(1S) $\rightarrow \gamma A^0$ 10 BaBar Y(3S)  $\rightarrow \gamma A^0$ **BaBar Combined** CLEO Y(1S)  $\rightarrow \gamma A^{0}$ 10<sup>-5</sup> 10 **BABAR** preliminary **BABAR** preliminary 10 m<sub>A0</sub> (GeV) 5 6 8 5 7 9 9 6 m<sub>A0</sub> (GeV)

arXiv:1210.5669, sub. PRD-RC, BABAR preliminary

Discrete 2012 - Third Symposium on Prospects in the Physics of Discrete Symmetries, Lisbon, 3-7 Dec. 2012 19



## Search for $e^+e^- \rightarrow Y(2S, 3S) \rightarrow \gamma A^0$ , $A^0 \rightarrow hadrons$ , PRL 107 (2011) 221803

- $A^0$  = low-mass CP-odd or CP-even NMSSM Higgs, can be reinterpreted as dark photon A'
- sensitive channel for high mass Higgs below the Y(4S) peak
- use sample of  $98 \cdot 10^6$  Y(2S) and  $121 \cdot 10^6$  Y(3S) events
- $A^0$  candidate built from:
  - ►  $K_S \rightarrow \pi^+ \pi^-$  candidates,
  - remaining hadrons identified as pions, kaons or protons
  - $\pi^0 \rightarrow \gamma \gamma$  candidates and extra photons
- $A^0 \gamma$  fit with constraint to event  $\sqrt{s}$ ,  $m(A^0)$ -dependent fit  $\chi^2$  cut
- two parallel analyses: CP-odd considers only CP-odd final states, CP-all all final states
- signal efficiency estimated with full simulation
- expected bkg estimated with full simulation, data control samples, sidebands
- significance assessed with toy MC simulated experiments with full simulation
- fit for  $m(A^0)$  peak for  $0.3 \text{ GeV} < m(A^0) < 7 \text{ GeV}$  with about 6700 steps: no significant signal
- $B(Y(nS) \rightarrow \gamma A^0) \cdot B(A^0 \rightarrow hadrons) < (1-80) \cdot 10^{-6}$  at 90% CL for 0.3 GeV <  $m(A^0) < 7$  GeV



Search for  $e^+e^- \rightarrow Y(2S, 3S) \rightarrow \gamma A^0$ ,  $A^0 \rightarrow hadrons$ , PRL 107 (2011) 221803

90% CL upper limits on  $B(Y(nS) \rightarrow \gamma A^0) \cdot B(A^0 \rightarrow hadrons)$ 



Discrete 2012 - Third Symposium on Prospects in the Physics of Discrete Symmetries, Lisbon, 3-7 Dec. 2012 21



# Conclusions

- BABAR has set constraints on the mass and couplings of "dark-sector" light bosons
- searches for N-MSSM CP-odd Higgs can be reinterpreted as constraints on "dark-sector" bosons
  - BABAR will provide further results soon
- ♦ low energy *e* + *e*<sup>-</sup> colliders are effective in searching for "dark-sector" gauge and Higgs bosons
- super flavour factories will be able to further probe the proposed "dark sector" models