

ERC Advanced Grant PI: Prof. Dr. Eberhard Widmann

MEASUREMENT OF HYPERFINE STRUCTURE OF ANTIHYDROGEN AT CERN

Chloé Malbrunot

on behalf of the ASACUSA collaboration

DISCRETE 2012

December 06th 2012

MOTIVATION

No observation of antimatter universe: asymmetry at the cosmological scale

No violation of CPT observed to date: symmetry at the microscopic scale

HFS

00

Ó

STANDARD MODEL EXTENSION

Standard Model extension (SME)

Bluhm, Kostelecky and Russel (PRL 82)

D. Colladay and V. A. Kostelecky, Phys. Rev. D 55 (1997) 6760

$$(i\gamma^{\mu}D_{\mu} - m_{e} - a^{e}_{\mu}\gamma^{\mu} - b^{e}_{\mu}\gamma_{5}\gamma^{\mu})$$
CPT and Lorentz violation
$$\frac{1}{2}H^{e}_{\mu\nu}\sigma^{\mu\nu} + ic^{e}_{\mu\nu}\gamma^{\mu}D^{\nu} + id^{e}_{\mu\nu}\gamma_{5}\gamma^{\mu}D^{\nu})\psi = 0$$
Lorentz violation

includes

·HFS

- Lorentz invariance (LI) violating
- Charge-Parity-Time invariance (CPT) (& LI) violating

terms in the Lagrangian

Parameters a, d, and H reverse sign for antihydrogen

Parameters a and b have a dimension of energy

Not relative, but **absolute** precision matters

STATUS OF CPT TESTS

• "Best CPT test": $K^0-K^0 \Delta m/m \sim 10^{-18} \Leftrightarrow 10^5 \text{ Hz}$

000000000

·HFS

- Relatively accuracy of 10^{-4} of \overline{H} GS-HFS (~1 GHz × $10^{-4} = 10^5$ Hz) can already be competitive
- CPT violation might appear in one physical system, but not in another

CPT TESTS WITH ANTIHYDROGEN

Measurements in Hydrogen:

Measurements in Hydrogen:

Measurements in Hydrogen:

quantity	exp. value [Hz]	$\delta_{\rm exp}/\nu$	$\delta_{\mathrm th}/\nu$
v_{1S-2S}	2 466 061 413 187 103(46)	1.7×10^{-14}	1×10^{-11}
v_{2S-2P}	$1\ 057\ 8450(29) \times 10^3$	2.7×10^{-6}	3.8×10^{-11}
$\nu_{ m HFS}$	1 420 405 751.7667(9)	6.3×10^{-13}	$(3.5 \pm 0.9) \times 10^{-6}$

CPT TESTS WITH ANTIHYDROGEN

Measurements in Hydrogen:

H·HFS

quantity	exp. value [Hz]	$\delta_{ m exp}/ u$	$\delta_{\mathrm th}/ u$
v_{1S-2S}	2 466 061 413 187 103(46)	1.7×10^{-14}	1×10^{-11}
v_{2S-2P}	$1\ 057\ 8450(29) \times 10^3$	2.7×10^{-6}	3.8×10^{-11}
V _{HFS}	1 420 405 751.7667(9)	6.3×10^{-13}	$(3.5 \pm 0.9) \times 10^{-6}$

DISCRETE 2012, Lisbon, Dec. 2012

limited by knowledge of proton magnetic and electric distribution

CPT TESTS WITH ANTIHYDROGEN

Measurements in Hydrogen:

H·HFS

quantity	exp. value [Hz]	$\delta_{\rm exp}/\nu$	$\delta_{\mathrm th}/\nu$
v_{1S-2S}	2 466 061 413 187 103(46)	1.7×10^{-14}	1×10^{-11}
v_{2S-2P}	$1\ 057\ 8450(29) \times 10^3$	2.7×10^{-6}	3.8×10^{-11}
<i>v</i>_HFS	1 420 405 751.7667(9)	6.3×10^{-13}	$(3.5 \pm 0.9) \times 10^{-6}$

DISCRETE 2012, Lisbon, Dec. 2012

limited by knowledge of proton magnetic and electric distribution

Measured CPT quantities:

quantity	value
$\Delta_{\rm CPT}(m_{\rm e})$	$< 8 \times 10^{-9}$
$\Delta_{\rm CPT}(m_{\rm p})$	$< 2 \times 10^{-9}$
$\Delta_{\rm CPT}(g_{\rm e})$	$(-0.5 \pm 2.1) \times 10^{-12}$
$\Delta_{\rm CPT}(\mu_{\rm p})$	$(-0.1 \pm 2.1) \times 10^{-3}$

THEORETICAL INTRODUCTION

Interaction between (anti)proton and electron (positron) magnetic moments

Between F = 1 and F = 0:

$$\nu_{\rm HF} = \frac{16}{3} \left(\frac{m_p}{m_p + m_e}\right)^3 \frac{m_e}{m_p} \frac{\mu_p}{\mu_N} \alpha^2 c R_\infty (1+\delta) \simeq 1.42 \text{ GHz}$$

 ν HF is appr. proportional to the (anti)proton magnetic moment $\mu_{\bar{p}}$

- δ : higher-order QED & strong interaction corrections: ~10⁻³
- Theoretical uncertainty on δ : ~10⁻⁶

MEASUREMENT PRINCIPLE

- Highest precision for hydrogen: 10⁻¹² with hydrogen maser
- But maser is not possible for antihydrogen

- Spectroscopy with trapped antihydrogen: lower precision due to strong confining field
- Good candidate: atomic beam with RF resonance
- 1) no \overline{H} trapping needed \rightarrow no need for ultra-cold (< 1 K) \overline{H}

MEASUREMENT PRINCIPLE

- 1.an inhomogeneous magnetic field \rightarrow a "cusp field" selects spin state
- 2. a microwave cavity flips the spin

3. a sextupole magnetic field analyzes spin state

INGREDIENTS FOR \overline{H}

INGREDIENTS FOR H

INGREDIENTS FOR H

CUSP "TRAP"

Anti-Helmholtz coil

- Multi-ring electrodes
- axially symmetric B and E
- **H** are formed in a nested well

Low Q microwave cavity surrounded by Helmholtz coils that generate an homogeneous magnetic field

3 layers of mu-metal Highly sensitive flux gate sensors monitor field inside the cavity

Low Q microwave **cavity** surrounded by Helmholtz coils that generate an homogeneous magnetic field

00000

H·HFS

3 layers of mu-metal Highly sensitive flux gate sensors monitor field inside the cavity

sextupole: superconduting magnet B_{max}=3.5T, I_{max}= 400A effective length: 22 cm

Low Q microwave **cavity** surrounded by Helmholtz coils that generate an homogeneous magnetic field

0

0

3 layers of mu-metal Highly sensitive flux gate sensors monitor field inside the cavity

H·HFS

Detector: hodoscope read-out by SiPM, central detector records annihilation

Trigger is based on a hit over threshold in the central segmented scintillator

Signal filtering based on the # of hits in the hodoscope Good (5Gbs/s) timing resolution can discriminate between out-of coincidence hits in detector from background annihilations)

12

sextupole:

superconduting magnet B_{max}=3.5T, I_{max}=400Aeffective length: 22 cm

STRATEGY

Goal: determine $\nu_{\rm HF}$ at B = 0

0

00

.....

but we can only measure $\nu \sigma \& \nu \pi$ at $B \gtrsim 1$ G

Two methods to obtain $\nu_{\rm HF}$ if $\Delta B \leq 0.02$ G: measure $\nu_{\sigma} \& \nu_{\pi}$ at one B, and calculate $\nu_{\rm HF}$ Experimentally more challenging But higher precision: ~10⁻⁷

> if $\Delta B \gtrsim 0.1$ G: measure $\nu_{\sigma} \& B$ at several B's, and extrapolate to B = 0Easier to realize But lower precision: $\sim 5 \times 10^{-7}$

SIMULATION & DATA

G4 studies:

- ${\ensuremath{\,^\circ}}$ simulation of \overline{H}
- trajectories in field
- background creation
- cosmics
- estimation of transition probabilities
- effect of homogeneities

0000

。 © 0

SIMULATION & DATA

G4 studies:

- simulation of \overline{H}
- trajectories in field
- background creation
- cosmics
- estimation of transition probabilities
- effect of homogeneities

simulation done at 1G, T=5K

SIMULATION & DATA

G4 studies:

- simulation of \overline{H}
- trajectories in field
- background creation
- cosmics
- estimation of transition probabilities
- effect of homogeneities

cosmic events in the CPT detector

H·HFS

FURTHER DEVELOPMENTS

Upgrade:

- Detector (addition of calorimeter, second layer of hodoscope, new silicon boards)
- CUSP (new MRE)
- New positron source

Hydrogen beam:

- permanent sextupoles create polarized hydrogen beam
- QMS detect GS hydrogen

FURTHER DEVELOPMENTS

Ongoing: Rabi method

DISCRETE 2012, Lisbon, Dec. 2012

SUMMARY AND OUTLOOK

Some Highlights:

2010: first antihydrogen production in the CUSP (Y. Enomoto et al. Phys. Rev. Lett 243401, 2010). Shared 1st place with ALPHA collaboration in Physics World breakthrough

2012: Results to come...

2013/2014 : CERN shutdown. Upgrade, Hydrogen beam experiment

SUMMARY AND OUTLOOK

Some Highlights:

2010: first antihydrogen production in the CUSP (Y. Enomoto et al. Phys. Rev. Lett 243401, 2010). Shared 1st place with ALPHA collaboration in Physics World breakthrough

2012: Results to come...

2013/2014 : CERN shutdown. Upgrade, Hydrogen beam experiment

Low energy antiprotons offer exciting possibilities for a variety of fields

- Fundamental symmetries
- Nuclear & atomic physics
- Precision spectroscopy

SUMMARY AND OUTLOOK

Some Highlights:

2010: first antihydrogen production in the CUSP (Y. Enomoto et al. Phys. Rev. Lett 243401, 2010). Shared 1st place with ALPHA collaboration in Physics World breakthrough

2012: Results to come...

2013/2014 : CERN shutdown. Upgrade, Hydrogen beam experiment

Low energy antiprotons offer exciting possibilities for a variety of fields

- Fundamental symmetries
- Nuclear & atomic physics
- Precision spectroscopy

Antihydrogen promises one of best CPT tests in baryon sector but high-precision experiments need Care, Particles and Time!

CERN-AD is unique in the world

More low-energy antiprotons needed

- ELENA upgrade at CERN (recently approved, start 2017)
- FLAIR at FAIR (next decade)

THE ASACUSA COLLABORATION

- tomic pectroscopy nd ollisions sing
- low
- ntiprotons

- ASACUSA Scientific project
- (1) Spectroscopy of p
 He
- (2) $\bar{\mathbf{p}}$ annihilation cross-section
- (3) **H** production and spectroscopy

THE ASACUSA COLLABORATION

tomic pectroscopy nd ollisions sing low ntiprotons

ASACUSA Scientific project

(1) Spectroscopy of p
He

(2) $\bar{\mathbf{p}}$ annihilation cross-section

(3) **H** production and spectroscopy

The **H** team

U**niversity of Tokyo, Komaba:** K. Fujii, N. Kuroda, Y. Matsuda, M. Ohtsuka, S. Takaki, K. Tanaka, H.A. Torii

RIKEN: Y. Kanai, A. Mohri, D. Murtagh, Y. Nagata, B. Radics, S. Ulmer, S. Van Gorp, <mark>Y. Yamazaki</mark>

Tokyo University of Science: K. Michishio, Y. Nagashima

Hiroshima University: H. Higaki, S. Sakurai

Univerita di Brescia: M. Leali, E. Lodi-Rizzini, V. Mascagna, L. Venturelli, N. Zurlo

Stefan Meyer Institut für Subatomare Physik: M. Diermaier, C. Malbrunot, O. Massiczek, C .Sauerzopf, K. Suzuki, E. Widmann, B. Wünschek, J. Zmeskal

DISCRETE 2012, Lisbon, Dec. 2012

6

RIKEN

THANK YOU VERY MUCH FOR YOUR ATTENTION!