Neutrino mass and baryon asymmetry in two right-handed neutrino model

Shintaro Eijima (Niigata Univ.)

In collaboration with Takehiko Asaka (Niigata Univ.)

DISCRETE 2012 @ Lisbon Dec. 4th, 2012

Introduction : Two Right-handed Neutrinos

SM extended by two Right-handed (RH) neutrinos $L = L_{SM} + i\overline{v}_{RI}\partial_{\mu}\gamma^{\mu}v_{RI} - F_{\alpha I}\overline{L}_{\alpha}\Phi v_{RI} - \frac{M_{I}}{2}\overline{v}_{RI}^{c}v_{RI} + h.c. \qquad \alpha = e, \mu, \tau$ I = 2, 3Neutrino masses $\Delta m_{atm}^{2}, \Delta m_{sol}^{2} \qquad M_{I} \gg M_{D} \equiv \langle \Phi \rangle F$ Seesaw mechanism $\rightarrow \begin{bmatrix} \text{Light (active) neutrinos} & V_{1} & V_{2} & V_{3} \\ \text{Heavy neutrinos} & N_{2} & N_{3} \end{bmatrix}$

Baryon Asymmetry of the Universe (BAU)

ex) Leptogenesis [Fukugita, Yanagida('86)]

Resonant Leptogenesis [Pilaftsis, Underwood('04)]

Baryogenesis via neutrino oscillation [Akhemedov, Rubakov, Smirnov('98)]

To probe the origins of neutrino masses and BAU the experimental test of RH neutrinos is crucial

Parameters in 2RHv model

Physics of heavy neutrinos is described by M_N and $F_{\alpha I}$ $\alpha = e, \mu, \tau$ $F_{\alpha I} = i \ U_{\rm PMNS} \ D_{\nu}^{1/2} \ \Omega \ D_{N}^{1/2} / \langle \Phi \rangle$ [Casas,Ibarra('01)] I = 2, 3Light neutrino sector (in IH) Dirac phase δ $D_{V}^{1/2} = \text{diag}(\sqrt{m_1}, \sqrt{m_2}, \sqrt{m_3} = 0)$ \sim Majorana phase η $U_{\rm PMNS} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - s_{23}c_{12}s_{13}e^{i\delta} & c_{23}c_{12} - s_{23}s_{12}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{23}s_{12} - c_{23}c_{12}s_{13}e^{i\delta} & -s_{23}c_{12} - c_{23}s_{12}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} 1 & & & \\ & e^{i\eta} & & \\ & & & 1 \end{pmatrix}$ Heavy neutrino sector $D_N^{1/2} = \text{diag}(\sqrt{M_2}, \sqrt{M_3})$ Complex parameter ω $\Omega = \begin{pmatrix} \cos \omega & -\sin \omega \\ \xi \sin \omega & \xi \cos \omega \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \cos(\operatorname{Re}\omega) & -\sin(\operatorname{Re}\omega) \\ \xi \sin(\operatorname{Re}\omega) & \xi \cos(\operatorname{Re}\omega) \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \cosh(\operatorname{Im}\omega) & -i\sinh(\operatorname{Im}\omega) \\ i\sinh(\operatorname{Im}\omega) & \cosh(\operatorname{Im}\omega) \\ Sign \text{ parameter } \xi = \pm 1 \end{pmatrix}$

Parameters in 2RHv model

Physics of heavy neutrinos is described by M_N and $F_{\alpha I}$

$$\begin{split} F_{\alpha I} &= i \ U_{\text{PMNS}} \ D_{\nu}^{1/2} \ \Omega \ D_{N}^{1/2} \ / \left\langle \Phi \right\rangle & \text{[Casas,Ibarra('01)]} \\ &= F\left(\underbrace{m_{1}, \ m_{2}, \ m_{3}, \ \theta_{12}, \ \theta_{23}, \ \theta_{13}, \ \delta, \ \eta, \ \underbrace{M_{N}, \ \Delta M, \ \text{Re}\,\omega, \ \text{Im}\,\omega, \ \xi}_{\text{Heavy v sector}} \right) \\ & \text{Light v sector} & \text{Heavy v sector} \end{split}$$

This model introduces 12 real parameters in addition to sign parameter

From oscillation experiments

<u>Global analysis</u>	$m_1 = 0.0488 \text{eV}$	$m_2 = 0.0496 \text{eV}$	$m_3 = 0$
(IH) [Fogli et al('12)]	$\sin^2\theta_{12} = 0.307$	$\sin^2\theta_{23}=0.392$	$\sin^2\theta_{13} = 0.0244$

 $\frac{\text{Unknown parameters}}{\delta = \begin{bmatrix} 0, 2\pi \end{bmatrix}} \quad \eta = \begin{bmatrix} 0, \pi \end{bmatrix}$ $M_N \qquad \Delta M \quad (\ll M_N) \qquad \xi = \pm 1$ $\text{Re}\,\omega = \begin{bmatrix} -\pi/2, \pi/2 \end{bmatrix} \qquad X_\omega = \exp(\text{Im}\,\omega) \ge 1$

Can these unknown parameters be determined experimentally?

"Testable" Right-handed Neutrinos

Neutrino Yukawa Coupling

Seesaw mechanism

Toy model with 1LHv + 1RHv

$$\begin{bmatrix} m_{v} = -M_{D} \frac{1}{M_{M}} M_{D} \\ M_{D} = F \langle \Phi \rangle \end{bmatrix}$$

$$\rightarrow F^2 = m_v M_M / \langle \Phi \rangle^2$$

When Majorana mass is small enough, RH neutrino is testable by experiments.

Framework in this talk

Target heavy neutrinos N_2 , N_3

■ Lighter than charged Kaon mass $M_{2.3} < m_{K} = 493 \text{MeV}$

 \implies Direct test by Kaon decays is possible $K^+ \rightarrow l^+ N_I$

• Quasi-degenerate $M_3 - M_2 = \Delta M \ll 2M_N = M_3 + M_2$

⇒ Baryogenesis via neutrino oscillation is possible [Akhemedov, Rubakov, Smirnov('98)]

In this framework, we show

- 1. Parameters are restricted from current experiments and Big-Bang Nucleosynthesis (BBN)
- 2. All unknown parameters might be determined by future experiments and BAU

Constraints of heavy neutrinos N₂, N₃

Direct search (PS191 experiment)

[Bernardi et al.('88)]

Production : π^+ , $K^+ \rightarrow e^+ N$, $\mu^+ N$

Detection : $N \rightarrow l^+ l^- \nu, \ l^+ \pi^-$

Upper bounds of mixing elements

$$\left|\Theta_{\alpha I}\right|^{2}\left(a\left|\Theta_{e I}\right|^{2}+b\left|\Theta_{\mu I}\right|^{2}+c\left|\Theta_{\tau I}\right|^{2}\right)$$

Mixing elements

$$V_{L\alpha} = (U_{\text{pmns}})_{\alpha i} V_i + \Theta_{\alpha I} N_I^c$$

$$\Theta_{\alpha I} \equiv \frac{\left(M_{D}\right)_{\alpha I}}{M_{I}} = \frac{\left\langle\Phi\right\rangle F_{\alpha I}}{M_{I}} \ll 1$$

(a,b,c:depend on M_N and channel)

Big-Bang Nucleosynthesis (BBN)

[Dolgov, Hansen, Rafflet, Semikoz ('00)]

To keep the success of BBN

 \implies Upper limit of lifetime $\tau_N < 0.1 \text{sec}$

 \implies Lower bounds of mixing elements $(\tau_N^{-1} = \Gamma$

$$\tau_N^{-1} = \Gamma_N \propto \left|\Theta\right|^2$$

From above two types of constraint

we evaluate the allowed region of heavy neutrinos N_2 , N_3

[Gorbunov, Shaposhnikov ('07)] [Ruchayski, Ivashko ('12)]

We find another interesting result in IH case!

Mixing elements of heavy neutrinos

When $\Delta M \ll M_N$ and $X_{\omega} \gg 1$,

mixing elements of N_2 and N_3 are same, $\Theta_{\alpha 2} = \Theta_{\alpha 3}$ [Asaka,SE,Ishida('11)]

Mixing elements in IH

$$\begin{cases} \left|\Theta_{e}\right|^{2} \approx 1.20 \times 10^{-8} \left(\frac{\text{MeV}}{M_{N}}\right) (1.000 - 0.925\xi\sin\eta) X_{\omega}^{2} \\ \left|\Theta_{\mu}\right|^{2} \approx 0.76 \times 10^{-8} \left(\frac{\text{MeV}}{M_{N}}\right) (1.000 + 0.895\xi\sin\eta) - 0.250\xi\cos\eta\sin\delta + 0.092\xi\sin\eta\cos\delta) X_{\omega}^{2} \\ \left|\Theta_{\tau}\right|^{2} \approx 0.50 \times 10^{-8} \left(\frac{\text{MeV}}{M_{N}}\right) (1.000 + 0.860\xi\sin\eta) + 0.380\xi\cos\eta\sin\delta - 0.140\xi\sin\eta\cos\delta) X_{\omega}^{2} \end{cases}$$

Mixing elements strongly depend on " $\xi \sin \eta$ "

→ Flavor dependence of mixing elements

Mixing elements of heavy neutrinos

Mixing elements in IH

 $M_N = 100 \text{MeV}, X_\omega = 10, \text{Re}\omega = 0$

Allowed range of Majorana phase in IH

Majorana phase is restricted by direct search experiment and BBN

⇒ Impact on neutrinoless double beta decay

$0ν\beta\beta$ decay in IH

Impact on $0\nu\beta\beta$ decay by restricted Majorana phase

Allowed range of Majorana phase in IH

- Future search experiments by Kaon decays can provide strong information on Majorana phase
- If M_N is determined by a experiment (Peak search), Majarana phase may be also determined

Heavy neutrino mass M_N from experiments

Direct search experiments of heavy neutrinos

Peak Search experiment [Shrock('80)]

ex)
$$\pi^+ \rightarrow e^+ + N_I$$

mixing Θ_{eI} measured

Search for the peak corresponding to heavy neutrino in positron energy distribution

$$E_{e^+} = \frac{1}{2m_{\pi}} (m_{\pi}^2 + m_e^2 - M_N^2)$$

Unique for a heavy neutrino mass

 $\implies M_N$ is determined by the Peak search experiments

Majorana phase η from experiments Θ_e^2 $\frac{\mathrm{BR}(K \to e+N)}{\mathrm{BR}(K \to \mu+N)} \propto \frac{|\mathbf{e}|}{|\mathbf{e}|}$ Ratio: X_{ω}^{2} is cancelled Information of CP phases $M_{N} = 250 \text{MeV}, \xi = +1$ 10^{1} $M_N = 100 \text{MeV}, X_m = 10$ $\xi = +1$, Re $\omega = 0$ 10^{-7} $3R(K \rightarrow eN)/BR(K \rightarrow \mu N)$ $|\Theta_{\mu}|^2$ 10^{0} 10^{-8} $|\Theta_{\alpha}|^2$ 10^{-9} $|\Theta_{e}|$ 10 10⁻¹⁰ 10⁻¹¹ 10⁻² 0.5 0 0.5 0 η/π η/π

Majorana phase η from experiments

<u>Ratio</u>: $\frac{\text{BR}(K \to e+N)}{\text{BR}(K \to \mu+N)} \propto \frac{\left|\Theta_{e}\right|^{2}}{\left|\Theta_{\mu}\right|^{2}} -$

Information of CP phases

ex)
$$\frac{\mathrm{BR}(K \to e + N)}{\mathrm{BR}(K \to \mu + N)} = 0.2$$

Once the ratio is measured, Majorana phase is limited only the two points.

Heavy neutrino search

$$\longrightarrow M_N, X_\omega, \xi$$
 and η
are determined

Relation between η and Re ω from BAU

Baryogenesis via Neutrino Oscillation

Generation of asymmetry is controlled by $F_{\alpha I}$

 \blacksquare Dependence of $~\delta~$ is very small and doesn't change sign of BAU

Relation between η and $\operatorname{Re}\omega$

Contour of baryon-to-entropy ratio Y_B

 $M_N = 250 \text{MeV}, \ \delta = \pi$

 $Reoo/\pi$

Correct sign of BAU restricts the region of $\operatorname{Re}\omega$ depending on η

 $\text{Re}\omega/\pi$

All unknown parameters have the potential to be determined from future experiments and cosmological observations.

 $\begin{array}{c}
 \underbrace{\text{Unknown parameters}} \\
 \delta = \begin{bmatrix} 0, 2\pi \end{bmatrix} & \eta = \begin{bmatrix} 0, \pi \end{bmatrix} \\
 M_N & \Delta M \quad (\ll M_N) & \xi = \pm 1 \\
 \text{Re}\,\omega = \begin{bmatrix} -\pi/2, \pi/2 \end{bmatrix} & X_{\omega} = \exp(\operatorname{Im}\omega) \ge 1
\end{array}$

Two right-handed neutrinos are the minimal option for neutrino masses from seesaw mechanism baryon asymmetry of the universe from Baryogenesis

When heavy neutrinos are quasi-degenerate with $M_N \sim 200 - 400 \text{MeV}$

We may have a chance to probe directly the origins of neutrino masses and baryon asymmetry by using kaon decays!

Thank you very much!

Mixing elements of heavy neutrinos

Mixing elements in IH

Backup

Negative contribution from heavy neutrinos for $0\nu\beta\beta$ decay

From neutrino mass matrix

$$\begin{cases} \hat{M} = \begin{pmatrix} 0 & M_{\rm D} \\ M_{\rm D}^{T} & M_{\rm M} \end{pmatrix} \longrightarrow \begin{bmatrix} \hat{M} \end{bmatrix}_{ee} = 0 \\ \sum_{i=1,2,3} m_{i} U_{ei}^{2} + \sum_{I=1,2,3} M_{I} \Theta_{eI}^{2} = \begin{bmatrix} \hat{U} \hat{M}^{\rm diag} \hat{U}^{T} \end{bmatrix}_{ee} = \begin{bmatrix} \hat{M} \end{bmatrix}_{ee} \end{cases}$$

$$\implies \sum_{I=2,3} M_I \Theta_{eI}^2 = -\sum_{i=1,2,3} m_i U_{ei}^2 = -m_{eff}^{\nu}$$

$$m_{\rm eff} = \sum_{i=1,2,3} m_i U_{ei}^2 + \sum_{I=2,3} f(M_I) M_I \Theta_{eI}^2 \simeq (1 - f_\beta(M_N)) \sum_{i=1,2,3} m_i U_{ei}^2$$

for ΔM is negligible

Backup

Negative contribution from heavy neutrinos for $0\nu\beta\beta$ decay

$$f_{\beta}(M_N) = M^{0\nu\beta\beta}(M_N) / M^{0\nu\beta\beta}(0)$$

Introduced to represent the suppression of the nuclear matrix element

Depends on M_N and the atomic number of the decaying nucleus

Backup

Dependence on Dirac phase of BAU

