

Property Measurements of Higgs-like Single Resonance at LHC "The JHU Generator"

Yanyan Gao(Fermilab)

On behalf of

S. Bolognesi(a), A. Gritsan(a), K. Melnikov(a), M. Schulze(b), N. Tran(c), A. Whitbeck(a) (a) Johns Hopkins University, (b) Argonne National Laboratory, (c) Fermi National Laboratory

- Review the $pp \rightarrow X \rightarrow VV$ interactions
 - The JHU Generator is used to simulate the $pp \rightarrow X \rightarrow VV$ interactions
 - Quick comparison to the VBF@NLO for the spin 2 $X \rightarrow \gamma \gamma$ couplings
- Review the angular analysis and perform generator validations
- Summary

Describe $pp \rightarrow X \rightarrow VV$ Interactions

The JHU Generator

- A MC program developed to simulate production and decay of $X \rightarrow VV$ with X spin <= 2
 - $X \rightarrow ZZ \rightarrow 4I, 2I2\tau, 2I2\nu, 2I2q$
 - $X \rightarrow WW \rightarrow 2I2v, Iv\tau v, Ivqq$
 - Х→үү
- Includes all spin correlations and all possible couplings
 - Inputs are general dimensionless couplings calculates matrix elements
- For the production of X, both gg and qq are considered
- Output in LHE format; e.g. can interface to Pythia for hadronization
- All code publicly available: <u>www.pha.jhu.edu/spin</u>
 - A dedicated manual is in preparation, aiming to release soon

$X \rightarrow VV$ Amplitude for Spin-0

• Model independent amplitude

$$A = v^{-1} \left(g_{1}^{(0)} m_{V}^{2} \epsilon_{1}^{*} \epsilon_{2}^{*} + g_{2}^{(0)} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + g_{3}^{(0)} f^{*(1),\mu\nu} f_{\mu\alpha}^{*(2)} \frac{q_{\nu}q^{\alpha}}{\Lambda^{2}} + g_{4}^{(0)} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \right)$$
$$f^{(i),\mu\nu} = \epsilon_{i}^{\mu} q_{i}^{\nu} - \epsilon_{i}^{\nu} q_{i}^{\mu} \qquad \tilde{f}_{\mu\nu}^{(i)} = 1/2 \ \epsilon_{\mu\nu\alpha\beta} f^{(i),\alpha\beta} = \epsilon_{\mu\nu\alpha\beta} \epsilon_{i}^{\alpha} q_{i}^{\beta}$$

• Rewrite it in terms of polarization vectors

$$A = v^{-1} \epsilon_1^{*\mu} \epsilon_2^{*\nu} \left(a_1 g_{\mu\nu} M_X^2 + a_2 \, \mathbf{q}_\mu \mathbf{q}_\nu + a_3 \epsilon_{\mu\nu\alpha\beta} \, \mathbf{q}_1^\alpha \mathbf{q}_2^\beta \right)$$

- The couplings a_1 - a_3 terms are expressed in terms of the couplings g_1 - g_4 , see reference paper
- The total amplitude is then expressed as the sum of 3 independent helicity amplitudes, which later can be used in angular analysis

$$\begin{aligned} \mathbf{A}_{00} &= -\frac{M_X^2}{v} \left(a_1 \mathbf{x} + a_2 \frac{M_{V_1} M_{V_2}}{M_X^2} (\mathbf{x}^2 - 1) \right) \\ \mathbf{A}_{\pm\pm} &= +\frac{M_X^2}{v} \left(a_1 \pm i a_3 \frac{M_{V_1} M_{V_2}}{M_X^2} \sqrt{\mathbf{x}^2 - 1} \right) \end{aligned} \quad \Leftarrow \quad \mathbf{x} = \frac{M_X^2 - M_{V_1}^2 - M_{V_2}^2}{2M_{V_1} M_{V_2}} \end{aligned}$$

$X \rightarrow VV$ Amplitude for Spin-2

• Model independent amplitude including 10 dimensionless couplings with arbitrary parity

$$\begin{split} A &= \Lambda^{-1} \left[2g_{1}^{(2)} t_{\mu\nu} f^{*1,\mu\alpha} f^{*2,\nu\alpha} + 2g_{2}^{(2)} t_{\mu\nu} \frac{q_{\alpha}q_{\beta}}{\Lambda^{2}} f^{*1,\mu\alpha} f^{*2,\nu,\beta} \right. \\ &+ g_{3}^{(2)} \frac{\tilde{q}^{\beta} \tilde{q}^{\alpha}}{\Lambda^{2}} t_{\beta\nu} (f^{*1,\mu\nu} f^{*2}_{\mu\alpha} + f^{*2,\mu\nu} f^{*1}_{\mu\alpha}) + g_{4}^{(2)} \frac{\tilde{q}^{\nu} \tilde{q}^{\mu}}{\Lambda^{2}} t_{\mu\nu} f^{*1,\alpha\beta} f^{*(2)}_{\alpha\beta} \\ &+ m_{V}^{2} \left(2g_{5}^{(2)} t_{\mu\nu} \epsilon_{1}^{*\mu} \epsilon_{2}^{*\nu} + 2g_{6}^{(2)} \frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}} t_{\mu\nu} \left(\epsilon_{1}^{*\nu} \epsilon_{2}^{*\alpha} - \epsilon_{1}^{*\alpha} \epsilon_{2}^{*\nu} \right) + g_{7}^{(2)} \frac{\tilde{q}^{\mu} \tilde{q}^{\nu}}{\Lambda^{2}} t_{\mu\nu} \epsilon_{1}^{*} \epsilon_{2}^{*} \right) \\ &+ g_{8}^{(2)} \frac{\tilde{q}_{\mu} \tilde{q}_{\nu}}{\Lambda^{2}} t_{\mu\nu} f^{*1,\alpha\beta} \tilde{f}^{*(2)}_{\alpha\beta} + g_{9}^{(2)} t_{\mu\alpha} \tilde{q}^{\alpha} \epsilon_{\mu\nu\rho\sigma} \epsilon_{1}^{*\nu} \epsilon_{2}^{*\rho} q^{\sigma} \right) \\ &+ \frac{g_{10}^{(2)} t_{\mu\alpha} \tilde{q}^{\alpha}}{\Lambda^{2}} \epsilon_{\mu\nu\rho\sigma} q^{\rho} \tilde{q}^{\sigma} \left(\epsilon_{1}^{*\nu} (q\epsilon_{2}^{*}) + \epsilon_{2}^{*\nu} (q\epsilon_{1}^{*}) \right) \right] \end{split}$$

X→VV Helicity Amplitudes for Spin-2

• Rewrite the amplitude in terms of polarization amplitudes for the on-shell decay

$$A = \frac{e_1^{*\mu} e_2^{*\nu}}{\Lambda} \left[c_1 t_{\mu\nu} (q_1 q_2) + c_2 g_{\mu\nu} t_{\alpha\beta} (q_1 - q_2)^{\alpha} (q_1 - q_2)^{\beta} + \frac{c_3 t_{\alpha\beta}}{M_X^2} q_{2\mu} q_{1\nu} (q_1 - q_2)^{\alpha} (q_1 - q_2)^{\beta} + 2c_4 (t_{\mu\alpha} q_{1\nu} q_2^{\alpha} + t_{\nu\alpha} q_{2\mu} q_1^{\alpha}) + \frac{c_5 t_{\alpha\beta}}{M_X^2} (q_1 - q_2)^{\alpha} (q_1 - q_2)^{\beta} \epsilon_{\mu\nu\rho\sigma} q_1^{\rho} q_2^{\sigma} + c_6 t^{\alpha\beta} (q_1 - q_2)_{\beta} \epsilon_{\mu\nu\alpha\rho} q^{\rho} + \frac{c_7 t^{\alpha\beta}}{M_X^2} (q_1 - q_2)_{\beta} (\epsilon_{\alpha\mu\rho\sigma} q^{\rho} (q_1 - q_2)^{\sigma} q_{\nu} + \epsilon_{\alpha\nu\rho\sigma} q^{\rho} (q_1 - q_2)^{\sigma} q_{\mu}) \right]$$

- The couplings c_1-c_7 terms are expressed in terms of the couplings g_1-g_{10} , see reference paper
- It is then expressed in terms of 9 helicity amplitudes to be used in angular analysis

$$\begin{split} A_{00} &= \frac{M_X^4}{M_V^2 \sqrt{6\Lambda}} \left[\left(1 + \beta^2 \right) \left(\frac{c_1}{8} - \frac{c_2}{2} \beta^2 \right) - \beta^2 \left(\frac{c_3}{2} \beta^2 - c_4 \right) \right] \\ A_{\pm\pm} &= \frac{M_X^2}{\sqrt{6\Lambda}} \left[\frac{c_1}{4} \left(1 + \beta^2 \right) + 2c_2 \beta^2 \pm i\beta (c_5 \beta^2 - 2c_6) \right] \\ A_{\pm0} &\equiv A_{0\pm} = \frac{M_X^3}{M_V \sqrt{2\Lambda}} \left[\frac{c_1}{8} \left(1 + \beta^2 \right) + \frac{c_4}{2} \beta^2 \mp i\beta \frac{(c_6 + c_7 \beta^2)}{2} \right] \\ A_{+-} &\equiv A_{-+} = \frac{M_X^2}{4\Lambda} c_1 \left(1 + \beta^2 \right) \end{split}$$

• The full helicity amplitudes for the off-shell case are in preparation for manuscript

Connect to VBF@NLO for spin 2

- We compare the equations I-2 to the VBF@NLO release note
 - http://www-itp.particle.uni-karlsruhe.de/~vbfnloweb/wiki/lib/exe/fetch.php? media=documentation:vbfnlo_releasenote26.pdf

For the singlet spin-2 field, $T^{\mu\nu}$, the effective Lagrangian is

$$\mathcal{L}_{\text{singlet}} = \frac{1}{\Lambda} T_{\mu\nu} \left(f_1 B^{\alpha\nu} B^{\mu}_{\alpha} + f_2 W^{\alpha\nu}_i W^{i,\mu}_{\alpha} + f_3 \widetilde{B}^{\alpha\nu} B^{\mu}_{\alpha} + f_4 \widetilde{W}^{\alpha\nu}_i W^{i,\mu}_{\alpha} + 2f_5 (D^{\mu} \Phi)^{\dagger} (D^{\nu} \Phi) \right), \tag{1}$$

and for the spin-2 triplet field, $T_j^{\mu\nu}$, the effective Lagrangian is given by

$$\mathcal{L}_{\text{triplet}} = \frac{1}{\Lambda} T_{\mu\nu j} \left(f_6 (D^\mu \Phi)^\dagger \sigma^j (D^\nu \Phi) + f_7 W^{j,\mu}_{\alpha} B^{\alpha\nu} \right), \qquad (2)$$

• The approximate corresponding couplings in the JHUGen

- Technical parameters for generating the 2m+
 - JHUGen: gI = g5 = I
 - VBF@NLO: F1=F2=F5 = 1

Technical Details on Generating 0+/0-/2m+

A more comprehensive manual is in preparation

Technical Detail on the 0+/0- Decay

• Coupling constants setup for the file mod_Parameters.F90

0+
<pre>! parameters that define off-shell spin 0 coupling to SM fields, see note complex(8), public, parameter :: ghg2 = (1.0d0,0d0) complex(8), public, parameter :: ghg3 = (0.0d0,0d0) complex(8), public, parameter :: ghg4 = (0.0d0,0d0)</pre>
0-
<pre>! parameters that define off-shell spin 0 coupling to SM fields, see note complex(8), public, parameter :: ghg2 = (0.0d0,0d0) ! scalar complex(8), public, parameter :: ghg3 = (0.0d0,0d0) complex(8), public, parameter :: ghg4 = (1.0d0,0d0) ! pseudoscalar</pre>
<pre>complex(8), public, parameter :: ghz1 = (0.0d0,0d0) ! scalar complex(8), public, parameter :: ghz2 = (0.0d0,0d0) complex(8), public, parameter :: ghz3 = (0.0d0,0d0) complex(8), public, parameter :: ghz4 = (1.0d0,0d0) ! pseudoscalar</pre>

• Follow the instructions of the README for the executable command

Technical Details on the 2m+ Decay

• Coupling constants setup for the file mod_Parameters.F90

! parameters that define spin 2 coupling to SM fields, see note
! minimal coupling corresponds to a1 = b1 = b5 = 1 everything else 0
complex(8), public, parameter :: a1 = (1.0d0,0d0)
complex(8), public, parameter :: a2 = (0.0d0,0d0) ! g2
complex(8), public, parameter :: a3 = (0.0d0,0d0)
complex(8), public, parameter :: a4 = (0.0d0,0d0)
complex(8), public, parameter :: a5 = (0.0d0,0d0) ! pseudoscalar, g8
complex(8), public, parameter :: graviton_qq_left = (1.0d0,0d0)! graviton coupling to quarks
complex(8), public, parameter :: graviton_qq_right = (1.0d0,0d0)
<pre>! see mod_Graviton</pre>
logical, public, parameter :: generate_bis = .true.
logical, public, parameter :: use_dynamic_MG = .true.
complex(8), public, parameter :: b1 = (1.0d0,0d0)
complex(8), public, parameter :: b2 = (0.0d0,0d0)
complex(8), public, parameter :: b3 = (0.0d0,0d0)
complex(8), public, parameter :: b4 = (0.0d0,0d0)
complex(8), public, parameter :: b5 = (1.0d0,0d0)
complex(8), public, parameter :: b6 = (0.0d0,0d0)
complex(8), public, parameter :: b7 = (0.0d0,0d0)
complex(8), public, parameter :: b8 = (0.0d0,0d0)
complex(8), public, parameter :: b9 = (0.0d0,0d0)
complex(8), public, parameter :: b10 =(0.0d0,0d0) ! this coupling does not contribute for gamma+gamma final states

Review Angular Analysis and Perform JHUGen Validation

Angular Analysis

• The helicity amplitudes can be measured from angular analysis

• Detailed expressions for the spin I and spin 2 can be found in the reference <u>*PhysRevD.81.075022</u>*</u>

Generator Validation $(X \rightarrow ZZ 0 + / 0 -)$

• In this test mX = 125 GeV

Generator Validation ($X \rightarrow WW 0+/0-$)

• In this test mX = 125 GeV

15

Generator Validation $(X \rightarrow WW 2m+)$

Generator Validation $(X \rightarrow \gamma \gamma)$

- We reviewed the model-independent amplitude for $X \rightarrow VV \rightarrow 4$ fermions interaction
- We reviewed the JHU generator for production and decay of $X \rightarrow VV$ with X spin <= 2
 - $X \rightarrow ZZ \rightarrow 4I, 2I2\tau, 2I2\nu, 2I2q$
 - $X \rightarrow WW \rightarrow 2I2\nu, I\nu\tau\nu, I\nuqq$
 - Х→үү
- Make a quick comparison to the VBF@NLO for the spin 2 model
 - JHUGen considers more general couplings
 - Both generators can generate the minimal couplings 2m+ models