

Data Acquisition, Trigger and Control

Trigger System

Selects in Real Time "interesting" events from the bulk of collisions. - Decides if YES or NO the event should be read out of the detector and stored

Data Acquisition System

Gathers the data produced by the detector and stores it (for positive trigger decisions)

Control System

Performs the overall Configuration, Control and Monitoring

LEP & LHC in Numbers

	LEP	LHC	Factor
	(1989/2000)	(2009)	
Bunch Crossing Rate	45 KHz	40 MHz	× 10 ³
Bunch Separation	22 µs	25 ns	× 10 ³
Nr. Electronic Channels	≈ 100 000	≈ 10 000 000	× 10²
Raw data rate	$\approx 100 \text{ GB/s}$	$\approx 1000\text{TB/s}$	× 10 ⁴
Data rate on Tape	$\approx 1 \text{ MB/s}$	$\approx 100 \text{ MB/s}$	x 10 ²
_			
Event size	≈ 100 KB	≈ 1 MB	× 10
Rate on Tape	10 Hz	100 Hz	x 10
Analysis	0.1 Hz	10 ⁻⁶ Hz	× 10 ⁵
	(Z ₀ , W)	(Higgs)	

Basic Concepts

Clara Gaspar, August 2012

Trivial DAQ with a real trigger

Clara Gaspar, August 2012

Trivial DAQ with a real trigger (2)

Trivial DAQ with a real trigger (3)

Trivial DAQ in collider mode

Clara Gaspar, August 2012

p p crossing rate 40 MHz (L=10³³- 4×10³⁴cm⁻² s⁻¹)

- Level 1 trigger time exceeds bunch interval
- Event overlap & signal pileup (multiple crossings since the detector cell memory greater than 25 ns)
- Very high number of channels

Less trivial DAQ

Clara Gaspar, August 2012

Clara Gaspar, August 2012

The Trigger system detects whether an event is interesting or not

- Typical ATLAS and CMS* event
- 20 collisions may overlap
- This repeats every 25 ns
- A Higgs event

^{*)}LHCb isn't much nicer and in Alice (PbPb) it can be even worse

- Since the detector data is not promptly available and the trigger function is highly complex, it is evaluated by successive approximations:
 - Hardware trigger(s):
 - I Fast trigger, uses data only from few detectors
 - I has a limited time budget
 - Level 1, Sometimes Level 2
 - Software trigger(s):
 - I Refines the decisions of the hardware trigger by using more detailed data and more complex algorithms.
 - I It is usually implemented using processors running a program.
 - ➡ High Level Triggers (HLT)

- Luckily pp collisions produce mainly particles with transverse momentum "p_t" ~1 GeV
- Interesting physics (old and new) has particles with large p_t

Conclusion: in the first trigger level we need to detect high transverse momentum particles

Example: LHCb Calorimeter Trigger

- 40 MHz synchronous digital system
- Synchronization at the exit of the pipeline non trivial. Timing calibration

Trigger Levels in LHCb

- Level-0 (4 ms) (custom processors)
 - I High p_T for electrons, muons, hadrons
 - Pile-up veto.
- HLT (≫ms) (commercial processors)
 - Refinement of the Level-1. Background rejection.
 - Event reconstruction. Select physics channels.
 - Needs the full event

Trigger Levels in ATLAS

- Level-1 (3.5 ms) (custom processors)
 - Energy clusters in calorimeters
 - Muon trigger: tracking coincidence matrix.
- Level-2 (100 ms) (specialized processors)
 - Few Regions Of Interest relevant to trigger decisions
 - Selected information (ROI) by routers and switches
 - Feature extractors (DSP or specialized)
 - Staged local and global processors
- Level-3 (»ms) (commercial processors)
 - Reconstructs the event using all data
 - Selection of interesting physics channels

Data Acquisition

Data Acquisition System

- Gathers the data produced by the detector and stores it (for positive trigger decisions)
 - Front End Electronics:
 - I Receive detector, trigger and timing signals and produce digitized information
 - Readout Network
 - I Reads front end data and forms complete events
 - Event building
 - Processing & Storage
 - I Data processing or filtering
 - Stores event data

Detector dependent (Home made)

On Detector

- I Pre-amplification, Discrimination, Shaping amplification and Multiplexing of a few channels
- I Problems: Radiation levels, power consumption

Transmission

- I Long Cables (50-100 m), electrical or fiber-optics
- In Counting Rooms
 - I Hundreds of FE crates : Reception, A/D conversion and Buffering

Front-end structure

Detector

Amplifier

Filter

Shaper

Range compression

Sampling

Digital filter

Zero suppression

Pipeline

Feature extraction

Buffer

Format & Readout

- Event-data are now digitized, preprocessed and tagged with a unique, monotonically increasing number
- But distributed over many *read-out* boards ("sources")
- For the next stage of selection, or even simply to write it to tape we have to get the pieces together: Event Building

Higher level triggers (3, 4, ...)

- LHC experiments can not afford to write all acquired data into mass-storage. -> Only useful events should be written to the storage
- The event filter function selects events that will be used in the data analysis. Selected physics channels.
- Uses commercially available processors (common PCs) But needs thousands of them running in parallel.

Event Building to a CPU farm

• We can build networks using buses or switches.

Switches vs. Buses

- Total bandwidth of a Bus is shared among all the processors. Adding more processors degrades the performance of the others. In general, Buses do not scale very well.
- With switches, N simultaneous transfers can co-exists. Adding more processors does not degrade performance (bigger switch). Switches are scaleable.

Clara Gaspar, August 2012

LHC Experiments DAQ

R		Level-1 _{kHz}	Event MByte	Storage MByte/s
	ATLAS	100	1	200
	CMS	100	1	200
	LHCb	1000	0.05	150
	ALICE	1	25	1250

Control and Monitoring data

Average rate into farm 1 MHz Average rate to tape 3 kHz

Configuration, Control and Monitoring

Control System Tasks

- Configuration
 - I Loading of parameters (according to RUN type)

I Enabling/disabling parts of the experiment

Partitioning

- I Ability to run parts of the experiment in standalone mode simultaneously
- Monitoring, Error Reporting & Recovery

I Detect and recover problems as fast as possible

User Interfacing

LHC Control Systems

Based on Commercial SCADA Systems (Supervisory Control and Data Acquisition)

- Commonly used for:
 - I Industrial Automation
 - I Control of Power Plants, etc.
- Providing:

- I Configuration Database and Tools
- I Run-time and Archiving of Monitoring Data including display and trending Tools.
- I Alarm definition and reporting tools
- I User Interface design tools

Control Automation

- Experiment runs 24/24 7/7
- Only 2 (non-expert) operators
- Automation
 - Avoids human mistakes and speeds up standard procedures
 - What can be automated
 - I Standard Procedures (Start of fill, End of fill)
 - I Detection and Recovery from (known) error situations
 - How
 - I Finite State Machine tools
 - I Expert System Type Tools (automated rules)

Two types of Monitoring

- Monitor Experiment's Behaviour
 - I Automation tools whenever possible
 - I Good (homogeneous) User Interface
- Monitor the quality of the data
 - I Automatic histogram production and analysis
 - I User Interfaced histogram analysis
 - I Event displays (raw data)

Homogeneous control of all parts of the experiment Stand alone operation (partitioning) Full Automation (Auto Pilot)

LHCb Big Brother

Clara Gaspar, August 2012

DCS Overall Control

LHCb Histogram Presenter

Concluding Remarks

- Trigger and Data Acquisition systems are becoming increasingly complex.
- Luckily the requirements of telecommunications and computing in general have strongly contributed to the development of standard technologies:
 - Hardware: Flash ADCs, Analog memories, PCs, Networks, Helical scan recording, Data compression, Image processing, ...
 - Software: Distributed computing, Software development environments, Supervisory systems, ...
- We can now build a large fraction of our systems using commercial components (customization will still be needed in the front-end).
- It is essential that we keep up-to-date with the progress being made by industry.