Dr. Paulo Gomes

on behalf of the team CERN — TE — CRG

with the precious contributions of the colleagues:

Project Associates (NTU-Athens, AGH-Krakow)
Industrial Support
Cryogenic Operation
AB — CO
energy per beam: 7 TeV
luminosity: 10^{34} cm$^{-2}$s$^{-1}$
main dipoles field: 8 T
current: 12 kA
main magnets superconducting: 1200 D + 400 Q
QRL feeds He to the superconducting magnets

- in all magnets +QRL: 10,000 cryogenic sensors & actuators
- super-fluid liquid He bath temperature: 1.9 K
- cryo distribution line feeding magnets every: 107 m
52 DFBs

5,000 instruments

support and cool

Current Leads that power the magnets
RF superconducting accelerator cavities @ 4.5 K

16 cavities grouped on 4 modules, on IP4
200 cryo instruments
tunnel - radiation
sector = 3.3 km

alcoves - radiation free

CERN Control Centre

CIET PVSS data server

surface - local control room

Ethernet Technical Network

2 PLC Siemens S7-400 500 ms cycle

CRYO-SCADA PVSS data server

CIET PVSS data server

8 FEC WorldFIP – Ethernet Gateway 500 ms cycle

point-to-point cables

4x Profibus 1.5 Mbit/s

180 cryogenic CV without electronics

100 FIP crates custom rad-tol electronics

sector = 3.3 km

“intelligent” CV positioners with electronics

4x WorldFIP 1 Mbit/s

FieldBuses → large distances

industrial electronics → protected areas

CVs → electronics moved into protected areas

front-end electronics → radTol custom made

8 FEC

100 m cycle

179 8 FEC

194 8 FEC

209 8 FEC

223 8 FEC

238 8 FEC

253 8 FEC

268 8 FEC

283 8 FEC

302 8 FEC

317 8 FEC

332 8 FEC

347 8 FEC

362 8 FEC

377 8 FEC

392 8 FEC

407 8 FEC

422 8 FEC

437 8 FEC

452 8 FEC

467 8 FEC

482 8 FEC

497 8 FEC

512 8 FEC

527 8 FEC

542 8 FEC

557 8 FEC

572 8 FEC

587 8 FEC

602 8 FEC

617 8 FEC

632 8 FEC

647 8 FEC

662 8 FEC

677 8 FEC

692 8 FEC

707 8 FEC

722 8 FEC

737 8 FEC

752 8 FEC

767 8 FEC

782 8 FEC

797 8 FEC

812 8 FEC

827 8 FEC

842 8 FEC

857 8 FEC

872 8 FEC

887 8 FEC

902 8 FEC

917 8 FEC

932 8 FEC
a few numbers

<table>
<thead>
<tr>
<th></th>
<th>TT</th>
<th>CV</th>
<th>PV</th>
<th>QV</th>
<th>PT</th>
<th>LT</th>
<th>EH</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>average / sector</td>
<td>1000</td>
<td>325</td>
<td>90</td>
<td>90</td>
<td>65</td>
<td>310</td>
<td>1880</td>
<td></td>
</tr>
<tr>
<td>total all-sectors</td>
<td>8000</td>
<td>2600</td>
<td>720</td>
<td>720</td>
<td>520</td>
<td>2480</td>
<td>15040</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIP crates</th>
<th>FIP segments</th>
<th>Profibus segments</th>
<th>PLC</th>
<th>CCL</th>
<th>alarms/interlocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>average</td>
<td>100</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>2x250</td>
</tr>
<tr>
<td>all sectors</td>
<td>800</td>
<td>68</td>
<td>42</td>
<td>16</td>
<td>4000</td>
</tr>
</tbody>
</table>
Databases are intensively used - LHC Controls Layout DB

17,055 instrumentation channels
798 FIP crates
855 cards
1,738 Profibus components
5,000 cable numbers

LHC Layout Database

- Specification files for manufacturing FIP Crates
- Cabling files for connecting & inspecting cables
- XML files for Mobile Test Bench
- Specifications for control software PLC, FEC, SCADA
(existing) **UNICOS framework** (Unified Industrial Control System) provides methodology & baseline tools to program industrial control systems @ CERN

(developed) generator of process specifications extracts from DBs the list of all objects, parameters, logical relations

(new) checker of specifications

(written) logic templates similar code for objects of same family

(new) external function with common logic

(existing) **UNICOS source code generator for PLC & SCADA**

(new) generator for specificities not covered by UNICOS gen code compilation with UNICOS libraries

(new) run/check code on test PLC with simulated inputs

project deployment on field machines

(new) last 5 LHC sectors to be deployed at a rate of 1 new sector every 2 weeks

In the end, the full sector code generation took only 2 days
200 panels / sector
40 synoptics, 35 bar-graphs, 60 alarms & interlocks
Repetitive panels use parameterized templates
Parameters generator, directly from DB

CRYO-SCADA for operation

CIET for Instrumentation Experts
Conclusions

The control software production relies strongly on a set of databases and on a package of automatic generation tools, which have been developed to create code in several steps, according to a well established methodology.

The UNICOS automated generation & checking tools proved to be essential for flexible and robust PLC code generation.

Thanks to extensive automatic code generation, we achieved reduced software-production time and effort, increased code reliability, minimised risk of human mistakes, simplified long term maintenance.

We managed to reach a deployment rate of 1 new sector every 2 weeks, while in parallel giving support and modifications on other operating sectors.

And…
At 10:28, one beam of protons was steered around the machine for the 1st time.

Around 15:00 the other beam circulated in the second ring (anticlockwise)
