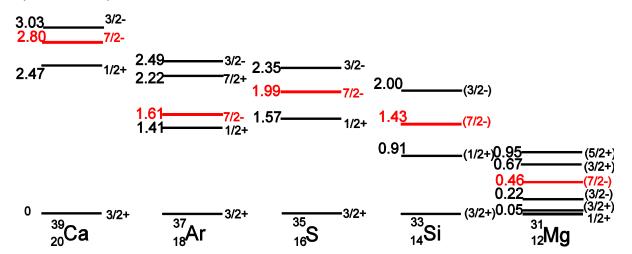
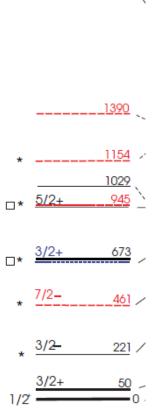

Proton resonance elastic scattering on ³⁰Mg: IS526

Nobu IMAI (KEK)


Single particle energies **10010** at 'Island of inversion'

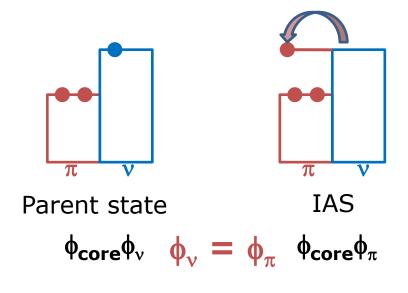
- Energy gap between *pf-sd* orbits.
- Single particle states will be a direct evidence of the shell evolution.

T. Otsuka et al, PRL104,012501



Experiments of ³¹Mg: so far

31Mg experiment

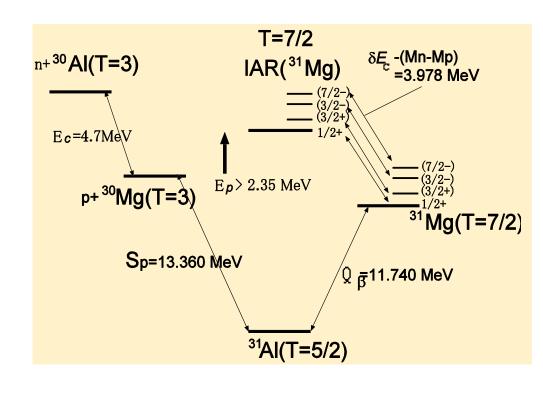


- g factor: ${}^{31}\text{Mg gs. Jp} = 1/2^+$ G. Neyens *et al.*, Phys. Rev. Lett. **94**, 022501 (2005).
- 31 Na(3/2+) β decay • 31 Na(3/2+) β decay
- 32 Na(π =-) β -delayed n • $^{2^{nd}}$ and $^{3^{rd}}$ excited state: π = -G. Klotz *et al.*, Phys. Rev. C **47**, 2502 (1993).
- Lifetimes of 1st, 2nd and 3rd excited states
 - $\rightarrow \lambda$ were assigned.
 - H. Mach et al., Eur. Phys. J. A 25, 105 (2005).

199192

Isobaric Analog Resonances of bound states of ³¹Mg

Resonance shape


= angular momentum (/)

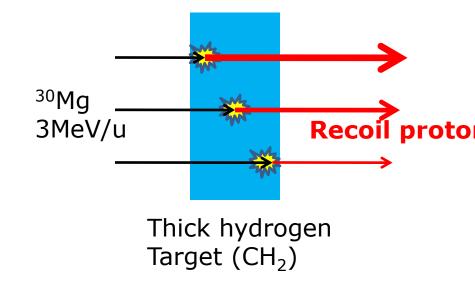
Resonance width

= total width (Γ_{tot})

Resonance height

= proton width $(\Gamma_p) \sim S^{pp}$

Thick target inverse kinematics(T²IK) proton resonance elastic scattering with RIBs


Excitation function of $d\sigma/d\Omega(\theta_{lab.}^{\sim}0)$

cf.) V.Z. Goldberg, ENAM98

1. High-energy recoil proton

- 2. One fixed energy
- 3. Large cross section

~ several 10 mb/sr

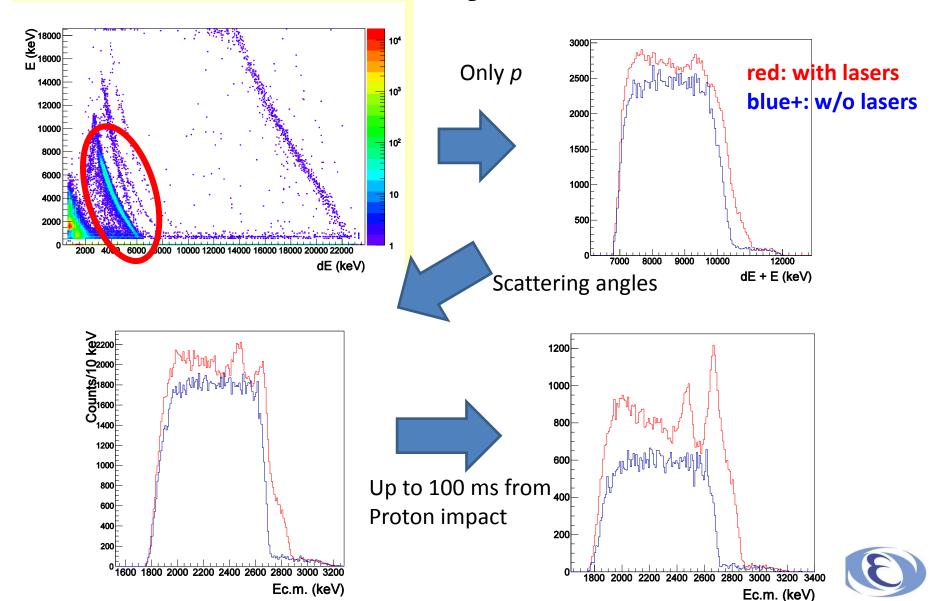
Experimental Setup

Carget (CH₂)

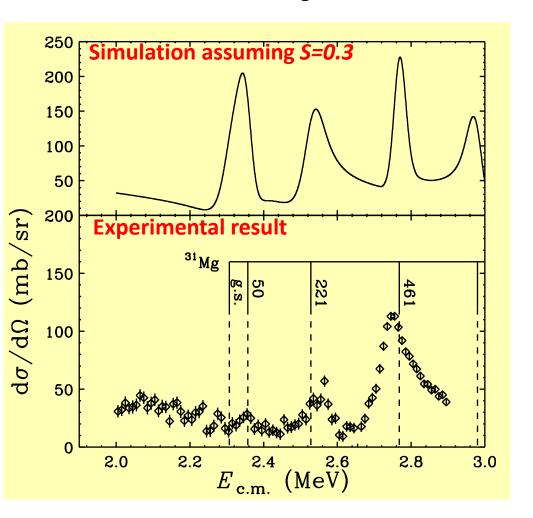
At the second beam line in REX

•Beam: ³⁰Mg⁷⁺: 2.92 MeV/u ~ 10⁵ pps ²⁶Mg :2.88 MeV/u : for calibration

•Target: 5. 6mg/cm² thick CH₂ 10.7 mg/cm² thick C


•**Detector**: dE-E detector (0.31+ 1.0 mm) dE: 32x 32ch doubly sided striped Si-pin detector (beam monitor) SSD telescope

•**Absolute** σ: off-resonance cross sections



Analysis

Experimental result

Resonance parameters for S=0.3

#			E _{cm} (MeV)	$\Gamma_{ m p}$ (keV)
1	0.	1/2+	2.307	57.
2	50.	(3/2+)	2.357	11.
3	221.	(3/2-)	2.528	50.
4	461.	(7/2-)	2.768	6.
5	673.	(3/2+)	2.980	27.
6	945.	(5/2+)	3.252	27.

Tentative conclusion

• IARs of g.s. and 1st excited states of ³¹Mg were strongly suppressed.

$$S \text{ for}(^{30}\text{Mg(g.s.)} + 1\text{n}) < 0.1$$

• IARs around 2.5 and 2.8 MeV supports the assignments $3/2^-$ for 221 and $7/2^-$ for 461 keV.

R-matrix fitting is on-going...

Summary

Proton resonance elastic scattering on ³⁰Mg was successfully measured with 2.92 MeV/u ³⁰Mg beams.

 IARs of ground and 1st excited states in ³¹Mg were found to be strongly suppressed.

 The shapes of IARs at 2.5 and 2.8 MeV show L=1 and 3, respectively.

Collaborators

- KEK: N.I., M. Mukai, Y.X. Watanabe
- Lund: J. Cederkall, P. Golubev
- CERN: J. Kurcewicz, A. Hossein
- Chalmers: J. Haakan
- Kyusyu-U: T. Teranishi
- CNS, Univ. o Tokyo: D. Kahl

