First nuclear spin-polarized beams at REX-ISOLDE

Hans Törnqvist^{1,(2)}, Christophe Sotty³

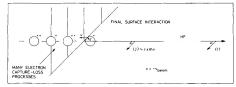
D L Balabanski⁴, M L L Benito⁵, A Dhal⁶, G Georgiev³, M Hass⁶, A Heinz¹, Y Hirayama⁷, N Imai², H Johansson¹, A Kusoglu^{3,8}, M Kowalska², T Nilsson¹, A Stuchbery⁹, F Wenander⁵, and D Yordanov²

December 18, 2012

- ¹ Fundamental Phys., Chalmers, Gothenburg, Sweden
- ² ISOLDE, CERN, Switzerland
- ³ CSNSM, Orsay, France
- ⁴ INRNE, BAS, Sofia, Bulgaria
- ⁵ BE Dept., CERN, Switzerland
- ⁶ Dept. of Part. Phys., Weizmann Institute, Rehovot, Israel
- ⁷ Inst. of Part. and Nucl. Stud., High Energy Acc. Res. Org. (KEK), Ibaraki, Japan
- ⁸ Sci. Fac., Istanbul University, Istanbul, Turkey
- ⁹ Dept. of Nucl. Phys., ANU, Canberra, Australia

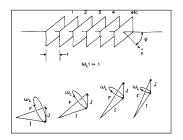
1 / 15

December 18, 2012

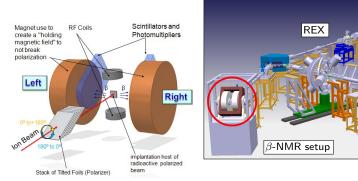

• • • • • • • • • • • •

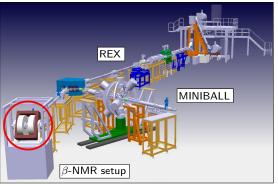
Introduction and motivation

- Benefits of ensembles of spin-oriented nuclei
 - + May improve sensitivity of some classes of experiments.
 - + Permits access to otherwise inaccessible observables.
 - Example: Spin/parity assignments in certain Rb and In isotopes.
- ISOLDE has polarized a variety of nuclei at low energies
- So why tilted foils after REX?
 - + Assumed wide range of polarizable nuclei.
 - + In-flight polarization for post acceleration.
 - + Deterministic and easily changed polarization direction.
 - + Non-destructive setup in existing beam-lines.
 - Not as efficient as special methods...
- β -NMR to observe and measure polarization

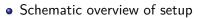

Tilted foils polarization

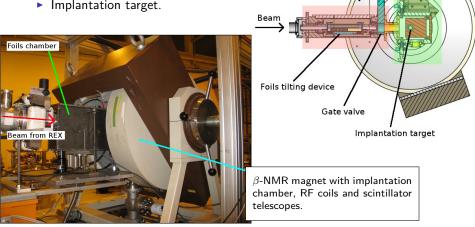
- Electrons at the exit surface of a foil interact and polarize the atomic spin of a traveling ion $(\vec{P} = \alpha \vec{n} \times \vec{v}, \alpha > 0)$
- Hyperfine interaction "transfers" part of the atomic spin polarization to the nuclear spin




 Multiple foils progressively increase polarization until saturation (*I* ≥ *J*)

Setup: Overview

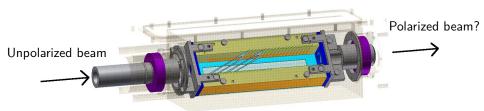

- β -NMR equipment donated by W. D. Zeitz, former HMI Berlin
- Positioned at 2nd beamline behind REX
 - Available space for other experiments to be plugged in.
- 0.3..3 MeV/u beam energy



イロト 不得 トイラト イラト 一日

Setup: Main parts

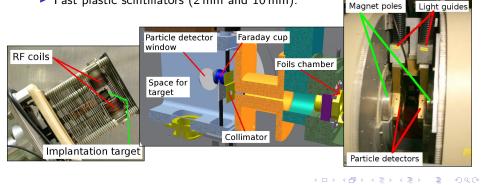
- Foil tilting device.
- Implantation target.


Magnet yoke

Magnet pole

A D N A B N A B N A B N

Setup: Foil tilting device


- Up to 20 foils in the setup
 - Diamond like carbon, $4 \mu g/cm^2$, $\sim 20 nm$ thin, TU München.
 - ▶ Mylar, 0.5 and 0.7µm, for beam energy degradation.
 - Set of fixed tilting angles, $\pm 65^{\circ}$, $\pm 70^{\circ}$ and $\pm 75^{\circ}$.
- Stepper motor turns foil holder around beam axis
 - \blacktriangleright Turning 180° flips foil tilting angle \rightarrow flips polarization direction.
- Soft iron shield to reduce β -NMR magnetic field close to foils

Manufactured at Weizmann Institute, Rehovot, Israel

Setup: Implantation chamber

- Beam diagnostics and collimation inside chamber
 - Collimator size adjustable.
 - Small Faraday cup between entry and target.
- RF coils driven externally by generator and amplifier
- $\beta \Delta E/E$ detector setup on each side of the implantation target
 - Fast plastic scintillators (2 mm and 10 mm).

Experiment

- $\bullet~^8\text{Li},~{\sim}4\text{e}5$ ions/s in front of foil chamber
 - $au_{1/2} pprox 0.84\,{
 m s}$, $Q_e pprox 13\,{
 m MeV}$, A=-1/3, A/q=4 @ 300 keV/u.
- Implantation in Pt crystal
 - Spin-lattice relaxation (T = 295 K) $\sim 4.3 \text{ s}^1$.
- Mylar foil for slowing down the beam in front of the carbon foils
 - From 300 keV/u to 200 keV/u.
- RF to destroy polarization
- Runs with and without iron shield
- Third time's the charm?
 - **2011-08**: ²⁷Na, good beam transmission, problems in DAQ.
 - 2011-10: ²⁷Na, DAQ problems solved, bad beam transport.
 - **3 2012-07**: ⁸Li, good beam, good DAQ \Rightarrow Success!

¹Ofer O et. al., Phys. Rev. B 86, 064419 (2012)

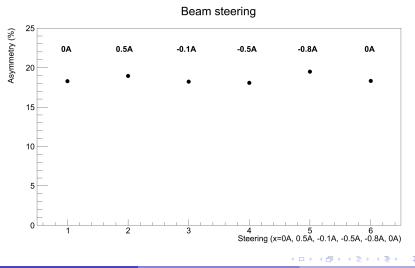
イロト イボト イヨト イヨ

Analysis

- Larmor frequency for ⁸Li @ $B = 0.05 \text{ T} \Rightarrow f_L = 315 \text{ kHz}$
- β -decay angular distribution

•
$$W(\theta) = 1 + A P \beta_e \cos \theta$$
, $P = \langle I_z \rangle / I$

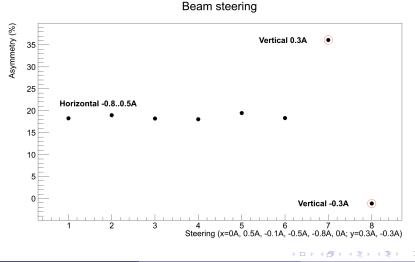
- ★ A=asym. param.
- ★ β_e =beta param. of e⁻
- ★ θ =angle between P and e⁻.
- Side-ways asymmetry \rightarrow polarization, solid angle α of β detectors


Spin relaxation in target

▶
$$au_{1/2} = 840 \text{ ms } \& \ au_r = 4.3 \text{ s} \to f_r \approx 0.848$$

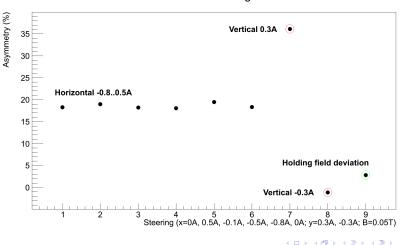
• Total correction: $P_0 \approx -3.6 \, \varepsilon$

Beam steering


Horizontal, 0 A..0.8 A $ightarrow \sim 1\%$ changes in asymmetry

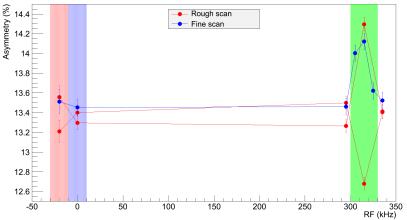
December 18, 2012 10 / 15

Beam steering


Vertical, $0 \text{ A.}.0.3 \text{ A} \rightarrow \sim 20\%$ changes in asymmetry

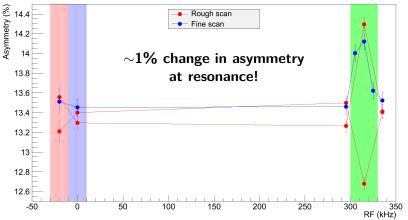
December 18, 2012 11 / 15

Beam steering


Holding field deviation, 0.05 T $ightarrow \sim 15\%$ change in asymmetry

Beam steering

β -NMR spectrum


10 C foils on Pt

- $\mathbf{Red} = \mathbf{Relaxation}$ from applied RF.
- **Blue** = No RF.
- White = Off-resonance RF.
- Green = RF in resonance, destruction of polarization.

β -NMR spectrum

10 C foils on Pt

- $\mathbf{Red} = \mathbf{Relaxation}$ from applied RF.
- **Blue** = No RF.
- White = Off-resonance RF.
- **Green** = RF in resonance, destruction of polarization.

- First of all:
 - ✓ We have an intermediate energy nuclear spin polarized beam at REX-ISOLDE!
 - ▶ Double ratio calc with fixed foil orientation \rightarrow 3.56 ± 0.29% and -2.77 ± 0.27% (-70° and +70° resp.)

(日) (四) (日) (日) (日)

- First of all:
 - ✓ We have an intermediate energy nuclear spin polarized beam at REX-ISOLDE!
 - ▶ Double ratio calc with fixed foil orientation \rightarrow 3.56 ± 0.29% and -2.77 ± 0.27% (-70° and +70° resp.)
- Large baseline offsets, acceptable due to detection efficiency
 - Baseline changes with foil tilting angle!
 - Angular straggling in foils, or collision with foil frames.
 - Other geometric asymmetries close to implantation?
 - Small vertical deviation gives large asymmetry changes.

- First of all:
 - ✓ We have an intermediate energy nuclear spin polarized beam at REX-ISOLDE!
 - ▶ Double ratio calc with fixed foil orientation \rightarrow 3.56 ± 0.29% and -2.77 ± 0.27% (-70° and +70° resp.)
- Large baseline offsets, acceptable due to detection efficiency
 - Baseline changes with foil tilting angle!
 - Angular straggling in foils, or collision with foil frames.
 - Other geometric asymmetries close to implantation?
 - Small vertical deviation gives large asymmetry changes.
- But clear β -NMR signal proves polarization

- First of all:
 - ✓ We have an intermediate energy nuclear spin polarized beam at REX-ISOLDE!
 - \blacktriangleright Double ratio calc with fixed foil orientation \rightarrow 3.56 \pm 0.29% and $-2.77 \pm 0.27\%$ (-70° and $+70^\circ$ resp.)
- Large baseline offsets, acceptable due to detection efficiency
 - Baseline changes with foil tilting angle!
 - Angular straggling in foils, or collision with foil frames.
 - Other geometric asymmetries close to implantation?
 - Small vertical deviation gives large asymmetry changes.
- But clear β -NMR signal proves polarization
- Changes 6h before run ended (2 days earlier than intended) gave results
 - Impact of iron shield, target, foil configuration?

Summary and outlook

- $\bullet\,$ Nuclear spin of ^8Li @ 300 keV/u polarized with 10 carbon foils
 - Measured up to 3.6% degree of polarization in Pt target with β -NMR.
- Need to investigate what impact the last changes had
 - Iron shield, target, beam degrading, foils...
- Other nuclei
- Move foils earlier in linac for post-acceleration
 - ▶ Need energies >300 keV/u for MINIBALL experiments.
 - Beam straggling and emittance simulations underway.
- HIE-ISOLDE
 - Proposal to study magnetic moments of isotopes of indium accepted by the CERN Research Board².

²CERN-INTC-2012-059; INTC-P-360

Summary and outlook

- $\bullet\,$ Nuclear spin of ^8Li @ 300 keV/u polarized with 10 carbon foils
 - Measured up to 3.6% degree of polarization in Pt target with β -NMR.
- Need to investigate what impact the last changes had
 - Iron shield, target, beam degrading, foils...
- Other nuclei
- Move foils earlier in linac for post-acceleration
 - ▶ Need energies >300 keV/u for MINIBALL experiments.
 - Beam straggling and emittance simulations underway.
- HIE-ISOLDE
 - Proposal to study magnetic moments of isotopes of indium accepted by the CERN Research Board².

Thanks for listening!

²CERN-INTC-2012-059; INTC-P-360