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Overview 

 
• Cavity specifications and design 
• Prototype cavity developments in 2012 
• Strategy and actions taken 
• Test cavities and results  
• Q switch issues 
• Last two prototype cavity results 
• Remaining issues and next steps 

 
 

 



HIE ISOLDE accelerating cavities 
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HIE ISOLDE cavities 

High Q (low power dissipation) for several MV/m accelerating field 
Only achievable with a superconducting structure  



 
Technologies for SC QWR  

 • Bulk Nb with high RRR and EB welds 

– Available from industry:  

– High gradients at low dissipated power are easier 

– Difficulties in operation (microphonics, high RF power 
needs) 

 

• Superconducting coatings (mechanical and thermal stability, 
lower cost) 

 

– Electroplating of Pb on Copper (limited to few MV/m due 
to low Bc of lead) 

 

– Nb sputtering on copper 

 

– Higher performance than lead plating, competitive with 
bulk Nb at these frequencies and temperatures 

– Multidisciplinary technology (surface science, vacuum, 
sputtering, clean room, superconductivity, RF engineering 
Never industrialized on the QWR shape 

– Several LINAC projects after HIE ISOLDE could profit from 
an industrialization 

 

 

  



• 4 units “old design”: Q1-Q2-Q3-Q5 
(rolling, EB welding, deep-drawing)  

• 1 new design: QP1+ 2 more in pipeline 
(3D machining in bulk copper, EB welding) 
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• 1 cavity (Q4) manufactured for 
sputtering tests on samples 

Cavity prototypes designed and built at CERN 

Note: Q3 and QP1 were left longer to reduce B on 
RF contact with tuning plate  



QP1: sensitivity to He pressure 

QP1 (new design) Q2 (old design) 
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He pressure (bar) 

y = 10.858x + 1E+08 
R² = 0.0066 
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He pressure (bar) 

~ 1 Hz/mbar ~ 0.01 Hz/mbar 



•  RF cavities (5 or 6) 
•  SC (Nb3Sn) solenoid  (1 or 2) 
 Up to 600 A 
•  Supporting frame 
•  Alignment / monitoring system 
 0.15 mm at cold ! 
•  Cryogenics reservoir and piping 
•  Vacuum system (valves, pumps) 
•  Thermal shield (50-80 K) 
•  Vacuum vessel 

HIE ISOLDE Cryomodule 
Side view 

Optics  Compactness       
 Common vacuum 



Common 
vacuum 

 
 risk of cavity 

contamination  
 

Cleanliness 



Surface treatment  
(dummy and real cavity) 



Sputtering system 



Diode sputtering 



Niobium sputter coatings: 9 test cavities produced in 2012 
Focusing on the DC bias sputtering method (INFN-LNL)  
 

 
 
 
 
 
 
 
 

 
Hardware modifications to the system were required to approach the desired 
sputtering parameters: 

– Cavity support in coating chamber redesigned 
– Infra red lamps baking system inside chamber with radiation shields 
– Discharge power increased from 2 kW to 10 kW : new power supplies 

Substrate preparation Tumbling, EP then SUBU 

Rinsing water pressure 100 bar 

Bake out temperature 600 ᵒ C (higher than sputtering T) 

Sputtering temperature 300-500 ᵒ C  

Heating system IR lamps inside vacuum chamber and QWR 

Number of layers 12-20 layers 

Sputtering Power 5 kW for 160 MHz structure 12.5 KW assumed from scaling of areas 

Auxiliary electrode 4 cm diameter, rounded, bias potential 

Film minimum thickness 2 µm 

Cathode edge profile sharpened 

Sputtering gas Argon 

Venting gas  Nitrogen 



Stripping 

metrology 

Chemistry 

Clean Room Assembly 

Coating 

Rinsing & Clean 
Room Assembly 

Insertion in 
cryostat 

Cool Down 

RF Conditioning,  

RF Measurements 

Warm Up, 
Venting 

Jan-12 Feb-12 Mar-12 Apr-12 May-12 Jun-12 Jul-12 Aug-12 Sep-12

Coating system Design and procurement of SS cavity support Resistive heating inside the antenna Copper screens, IR lamps, 8 kW Power supply 12 kW PS

Coatings Q1_9 Hlicoflex Q1_10 Q2_6 Q3_1 tests of new baking Q1_11 QP1_2 Q3_2

RF tests Q2_5 Q1_9 Q2_5 LNL coupler+ In Q1_10 LNL couplerQ1_10 CERN couplerQ2_6 Q3_1 Cryo SM18 downQ3_1 + Magnet Q1_11 QP1_2

Effective turnaround for 
cold RF tests: 3 weeks 



Increasing test rate at end 2012 

Aug-12 Sep-12 Oct-12 Nov-12

12 kW PS

QP1_2 Q3_2 Q2_7 Q3_3

Q1_11 QP1_2 Q2_7 Q3_3

CRYO OK 37

Tests RF 12

3.083 Weeks/test

2Weeks/cavity demonstrated
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HIE-ISOLDE specification

Q1_9 (February 2012)

Q1_10 (April 2012)

Q2_6 (May 2012)

Q3_1 June 2012

10 W

Q1_11 after He processing

Q1_11 after 2nd He processing

QP1_2

Test cavity performances in 2012 
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Q1_11 10 W

Q1_11 first test results at 4.5 K 

Most likely field emission from the 
tip of the inner conductor (tuning 
plate heating, exponential Q drop)  
Was eliminated with He processing 
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Q1_11

10 W

Q1_11 after He processing

Q1_11 after 2nd He processing

Q1_11 test results after He processing: Q switches 



QP1 test results: before He processing, similar behaviour as Q1_11 
after He processing. Onset al lower fields. Slight gain in field at 3 K 
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Observations on “Q switches” 

 

Happen at a determined value of field, not correlated with direct power (checked by 
changing coupling) 

Associated with temperature increase at tuning plate  

Deterministic hysteresis paths in Q-E plane 

Can jump on upper branch by switching off and on RF (very fast recovery if power is 
switched off and restored at a level below onset threshold) 

Very low Q slopes (contrary to classical field emission) 

 

Actions taken after Q1_11 and QP1_2  

 Electrical heater installed on the bottom plate 

 Double check RF contact at the bottom plate 

 Increase the thickness of the Nb film by 25% 

 Plan incremental stripping on the cavities with Q switch 

 Plan systematic thickness measurements on cavity and on samples 

 

 

  

 

 

 

 

 



First measurement at 4.5 K before He processing 
Q0 is of the order of 1.2 109 and on the first powering the cavity reached 5 MV/m at 10 W 
The curve very much resembles that of Q1_11 but it does not have any Q switch.  
 

Onset of field emission 

Sudden Q drop and x rays 
burst 
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Measurement at 4.5 K when heating the tuning plate 
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QP1_2 after He processing Q2_7 heating the tuning plate 10W

increasing T tuning plate 

11.6 K 



Q vs tuning plate temperature 
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Q2_7 heating the tuning plate



Power dissipation of normal conducting bottom plate 
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QP1_2 after He processing

Q2_7 with SC tuning plate

Q2_7 heating the tuning plate

ΔPcav Q2_7 

ΔPcav QP1_2 

Power dissipation due to a normal 
conducting bottom plate (flat plate 
Tipgap70)@0.55MV/m: calculated 
value  
Δpcav@0.55MV/m= 0.11455W* 

QP1_2 
Pcav@0.55MV/m = 0.041W before 
the Qswitch 
Pcav @0.55MV/m = 0.45W 
after the Qswitch 
Δpcav@0.55MV/m= 0.409W 

Q2_7 
Pcav@0.55MV/m =  0.035W 
before the Qswitch 
Pcav @0.55MV/m = 0.15W after the 
Qswitch due to NC tuning plate 
Δpcav@0.55MV/m= 0.115W 

The power dissipated during the experiment on Q2_7 matches with the simulated value, 
while the one dissipated in QP1_2 Qswitch is 4 times bigger.                                         * A.D`Elia 
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Conclusions and outlook 

• HIE ISOLDE cavities performances greatly progressed in 2012 

•  Q2_7 reached 5 MV/m at 10 W  5.3 MeV/u for A/q=4.5 

• Cavity optimization will continue in the first half of 2013 

• Cavity review requested by IAP will be held on 21 January 2013 

 

 

 

 

 

 


