Searches Beyond the Standard Model at ATLAS

LHC on the March November 20-22, 2012

Nathan Triplett – On behalf of the ATLAS collaboration

Outline

- ATLAS Exotics and SUSY searches have been extensive
- Most new models tested with limits at or above 1 TeV
- This talk will focus largely on results from the past two months

All limits qualed are abserved minus for theoretical signal cross section uncertaint

Outline

- ATLAS Exotics and SUSY searches have been quite extensive
- Most new models tested with limits at or above 1 TeV
- This talk will focus largely on results from the past two months

Some BSM models in this talk

- R-parity violating (RPV) SUSY
 - $P_p = (-1)^{2S+3B+L}$
 - Lightest SUSY particle is stable if P_R is conserved
- Anomaly-mediated SUSY breaking (AMSB)
 - Soft SUSY breaking via loop effects
 - Can cause nearly degenerate particle masses
- Gauge-mediated SUSY breaking (GMSB)
 - Gravitino is the LSP
 - Look for decays of NLSP → Gravitino
- General Gauge Mediation (GGM)
 - Generalizes GMSB
 - Allows squarks/gluinos below 1 TeV
- Large Extra Dimensions
 - Look for gravaton decays into photons
- New "SM like" particles
 - 4th Generation quarks
 - New Z-like boson
- Compositeness
 - Look for substructure inside quarks and leptons

RPV SUSY: 4 lepton channel (1)

- 8 TeV analysis
- Pair produced LSP → 4 leptons + neutrinos

- 4 models tested
- Selection:
 - 4 electrons/muons
 - Large MET or Meff
- 2 signal regions

Selection	SR1	SR2
Number of leptons	≥4	≥4
SFOS pair	_	_
Z-candidate	Z-veto	Z-veto
$E_{\rm T}^{\rm miss}/{\rm GeV}$	> 50	_
$m_{ m eff}/{ m GeV}$	_	> 300

RPV Wino simplified model

RPV SUSY: 4 lepton channel (2)

Each set of limits assumes a different NLSP as listed below

RPV SUSY: gluino → 3 quarks

- Pair produced gluinos
 - Each decays to three quarks
- 2 analysis methods
 - Resolved analysis
 - Look for events with 6 high pT jets
 - pT of 6th jet is main kinematic discriminant
 - Boosted analysis
 - Look for events with two heavy, large radius jets and 4 normal (R=0.4) jets
 - Main discriminant are the large jets' substructure, mass, pT

RPV SUSY: Displaced vertex

- Some models predict long lived neutralinos
 - · Lifetime of picosecond to nanosecond
 - Decay length mm to many cm
- Look for events with a displaced vertex containing a muon and at least 5 tracks
 - Invariant mass of tracks in vertex required to be above 10 GeV
- Consider two different squark and neutralino masses in 3 combinations

	$m_{ ilde{q}}$	σ	$m_{ ilde{\chi}^0_1}$	$\langle \gamma \beta \rangle_{\tilde{\chi}^0_1}$	$c au_{ m MC}$	λ'_{211}
	[GeV]	[fb]	[GeV]		[mm]	$\times 10^{-5}$
MH	700	66.4	494	1.0	78	0.3
ML	700	66.4	108	3.1	101	1.5
HH	1500	0.2	494	1.9	82	1.5

AMSB: Disappearing tracks

- Chargino and neutralino nearly degenerate
 - Very long lived particle
 - · Look for a decay inside the tracking volume
- Signature:
 - Jet + MET + high pT disappearing track
 - Jet from ISR used for trigger
- Look for a good track with many good hits in the inner tracking volume but < 5 in the outer module

GMSB: MET + Jets + Tau

- This analysis assumes NLSP is a stau
 - Decays to gravitino + tau
- Look for events with a tau + leptons
- 4 signal regions
 - 1 tau
 - 2 taus
 - tau+muon
 - tau + electron
- Use MET, HT, and mT to discriminate between signal and background
 - Tune cuts for each signal region separately

mT in electron channel

HT for 1 tau final state

GGM: b-jets + photons + MET

- This analysis assumes NLSP is a neutralino
 - Can decay into photon + LSP
 - Can decay to Higgs → b-quarks
- Pair produced
 - Assume one decays in each channel
- Look for events with
 - Exactly 1 photon
 - 2 jets, at least one b-tagged
 - MET > 150 GeV
 - Photon + MET mT > 100 GeV

GGM: photon + lepton + MET

3

 $\sqrt{s} = 7 \text{ TeV}$

e channel

GGM (1500, 200)

- GGM (600, 500)

systematics

ATLAS Preliminary

 $\sqrt{s} = 7 \text{ TeV}$

u channel

Wγ

other

systematics

ATLAS Preliminary

GGM (1500, 200)

GGM (600, 500)

- Chargino decays to gravitino + W
- Neutralino decays to gravitino + photon (or Z)
- Look for events with a photon, and a W boson

GGM: Z boson + jets + MET

- 8 TeV analysis
- If neutralino is higgsinolike it can decay to gravitino + Z
- 2 overlapping SR. Look for events with:
 - 3 jets (HT > 300)
 - MET > 220 (140)
 - Z boson

3 Jet signal region

High HT signal region

SUSY: Multijet and lepton

- Search uses MSUGRA/CMSSM/ and RPV models
 - SUSY particles decay via a cascade into the LSP
 - Final state has many jets + MET
- Require
 - At least 7 jets
 - MET > 180
 - Meff > 750
 - mT > 120
 - Exactly 1 lepton

m [GeV]

2 step simplified models

m_ຊ [GeV]

Electroweak SUSY production: 3 lepton channel (1)

- 8 TeV analysis
- Direct production of charginos and neutralinos
 - Can decay to:
 - slepton or sneutrino+lepton
 - slepton + neutrino
 - W or Z + neutralinos
- Look for events with 3 leptons (e/mu)

Selection	SR1a	SR1b	SR2
Targeted $\tilde{\chi}_2^0$ decay	$\tilde{l}^{(*)}$ or Z^*		on-shell Z
$ m_{\rm SFOS}-m_{\rm Z} $	> 10	$< 10\mathrm{GeV}$	
Number of <i>b</i> -jets	0		any
$E_{ m T}^{ m miss}$	> 75 GeV		$> 120\mathrm{GeV}$
$m_{ m T}$	any	> 110 GeV	$> 110\mathrm{GeV}$
$p_{\rm T}$ of leptons	$> 10\mathrm{GeV}$	> 30 GeV	$> 10\mathrm{GeV}$

Electroweak SUSY production: 3 lepton channel (1)

Gluino mediated stop and sbottom: 3 b-jets + MET

- 8 TeV analysis
- Pair produced gluinos 🗟
- Gluino decays either to:
 - top+stop+LSP
 - bottom+sbottom+LSP
- Look for events with
 - 3 b-jets
 - MET > 200 GeV
 - MET/Meff > 0.2
 - At least 4 jets and
 - B-jet pT > 50
 - Meff > 900/1100/1300
 - At least 6 jets and
 - B-jet pT > 30
 - Meff > 1100/1300/1500

Gluino mediated stop, direct sbottom: 3 leptons + jets + MET

- 8 TeV analysis
- Pair produced gluinos
 - Decays to 4 tops + MET
- Pair produced sbottoms
 - Decays to 2 tops + 2 leptons + MFT
- Look for events with
 - At least 3 leptons
 - At least 4 jets
 - MET > 50 GeV
 - No lepton pair consistent with J/Psi or Z boson decay

Monojets + MET (1)

- 8 TeV analysis
- Look for events with one high energy jet + large MET
- Veto on leptons and 3rd jet
- Require second jet to point away from MET
 - Reduces fake MET
- Models producing this signature
 - Large Extra Dimensions (LED)
 - Use model of Arkani-Hamed, Dimopoulos, and Davali (ADD)
 - Weakly interacting massive particle (WIMP)
 - · Dark matter candidate
 - 3 possible couplings of WIMPs to SM particles considered (see below)
 - GMSB SUSY
 - Gravitino + squark/gluino production

Name	Initial state	Type	Operator
D5	qq	vector	$\frac{1}{M_{\star}^2} \bar{\chi} \gamma^{\mu} \chi \bar{q} \gamma_{\mu} q$
D8	qq	axial-vector	$\frac{1}{M_{\star}^2} \bar{\chi} \gamma^{\mu} \gamma^5 \chi \bar{q} \gamma_{\mu} \gamma^5 q$
D11	gg	scalar	$\frac{1}{4M_{\star}^3}\bar{\chi}\chi\alpha_s(G_{\mu\nu}^a)^2$

			SR4		
	Data quality + trigger + vertex + jet quality + $ \eta^{\text{jet1}} < 2.0 + \Delta\phi(\mathbf{p}_{\text{T}}^{\text{miss}}, \mathbf{p}_{\text{T}}^{\text{jet2}}) > 0.5 + N_{\text{jets}} \le 2$				
$E_{\rm T}^{\rm miss}, p_{\rm T}^{\rm jet1} > 120$	lepton veto 120 GeV 220 GeV 350 GeV 500 GeV				

Monojets + MET (2)

Extra Dimensions: Diphoton channel

- Two LED models considered here:
 - Randall-Sundrum (RS)
 - Arkani-Hamed, Dimopoulos, and Davali (ADD)
 - Both predict a graviton decaying to a pair of photons
- Pick events with a pair of high pT photons
 - Require both to be very cleanly identified
- Use BumpHunter to scan the diphoton invariant mass distribution

Graviton mass (m_G limits) in RS model

Strength of gravity (η_G) in ADD model

Extra Dimensions: Diboson channel

- 8 TeV analysis
- Look for RS graviton decaying to a ZZ pair
 - ZZ → Ilqq channel
- Look for events with:
 - 2 same flavor leptons
 - 1 (merged) or 2 (resolved) jets
 - 2 jets with a mass near the Z mass
 - 1 jet with mass > 40 GeV
- Form invariant mass of 2 leptons and jet(s)

Z' Boson: electron/muon channel

- 8 TeV update
- Search for heavy Z-like boson
 - Look for Z' \rightarrow ee or $\mu\mu$ decays
 - Select events with a pair of high pT electrons or muons
- Form dilepton invariant mass

m_{ee} [GeV]	110 - 200	200 - 400	400 - 800	800 - 1200	1200 - 3000
Z/γ^*	36200 ± 1500	4330 ± 180	412 ± 20	21.6 ± 1.5	3.03 ± 0.35
$t\overline{t}$	2190 ± 250	750 ± 130	53 ± 19	0.86 ± 0.18	0.041 ± 0.017
W + jets	470 ± 130	130 ± 40	10.6 ± 3.0	0.30 ± 0.09	0.026 ± 0.009
Diboson	482 ± 34	172 ± 22	21 ± 8	0.91 ± 0.05	0.117 ± 0.014
Dijet	720 ± 240	250 ± 120	34 ± 23	2.1 ± 2.0	0.4 ± 0.5
Total	40100 ± 1600	5620 ± 260	530 ± 40	25.8 ± 2.5	3.6 ± 0.6
Data	39875	5760	615	31	5

Z' Boson: tau channel

- Previous Z' search only looks in electron/muon channels
- If Z' decays predominantly to tau tau, dedicated search required
- Split by four tau decay channels:
 - Had-Had
 - Electron-Had
 - Muon-Had
 - Electron-Muon
- Additional MET, MT, and angular cuts to reject backgrounds

t' → Wb: lepton+jets channel

- High mass 4th generation top quark like particle
- Search for t't' → Wb+Wb decay
 - Assumes t' mass is close to b' mass
- Look for events with boosted W
 - W may merge into one jet
- Selection
 - 2 jets + boosted jet, or 4+ jets
 - H₊ > 750 GeV
 - 1 or two b-tagged jets
 - Tagged jets must have ΔR >1.4 between W candidates and leptons (tight requirement)

Dijet mass and angular distributions (1)

- 7 and 8 TeV analyses
- New physics can show up in the dijet invariant mass distribution or in the angular jet distributions
- Very inclusive type of search
 - Excited quarks
 - Colour octet scalars
 - Heavy W bosons
 - String resonances
 - Quantum black holes
 - Composite quarks
- Select events with two very high pT jets
- Compare shape of dijet distributions and angular variables
 - $\bullet X = \exp(|y1 y2|)$

Dijet angular distributions (2)

Excited leptons

- 8 TeV analysis
- Look for excited leptons
 decaying into a lepton pair
 plus photon
- Signature of composite leptons
- Look at invariant mass distribution of both leptons and photon
- Limit on excited lepton mass vs compositeness scale

Top quark pair resonances

8 300

Events 200

150

100₩

Data 2011

Πt̄t

Multijet

ATLAS

 $\sqrt{s} = 7 \text{ TeV}$

 $L dt = 4.7 \text{ fb}^{-1}$

HEPTopTagger

Z' (1 TeV) $\sigma = 1.3$ pb

Events / 100 GeV

30

25

20

15

10⁻

- Data 2011

Multijet

Ιŧ₹

 g_{KK} (1.6 TeV) $\sigma = 0.35$ pb

 $L dt = 4.7 fb^{-1}$

Top Template Tagger

ATLAS

 $\sqrt{s} = 7 \text{ TeV}$

- Leptophobic Z' or KK gluons can decay into ttbar pairs
- Look for events with 2 high pT jets and 2 b-tagged jets
- Use jet substructure information
 - HEPTopTagger
 - For top pT > 200 GeV
 - R=1.5 jets

Summary

Thank you

Backup Slides

Scalar gluons: four jet channel

- Pair produced scalar gluons
 - Each decays into a pair of jets
- Reconstruct events with 4 jets into two pairs
 - Minimize $|\Delta R_{pair1} 1| + |\Delta R_{pair2} 1|$
 - Mass of each pair should be within 30% of each other
 - Require |cos(scattering angle)| < 0.15

Extra Dimensions & Composite Particles: Dilepton channel

- New physics can change the dilepton invariant mass distribution
 - Gravitons/Extra dimensions
 - ADD model
 - Contact interactions

Limits on contact

interaction scale

- · Composite quarks/leptons
- Select events with a pair of high pT electrons or muons
 - Well reconstructed and isolated leptons
- Use binned likelihood to compare data to different models

Channel	Prior	GRW	Hewett			HLZ		
				n=3	$n{=}4$	$n{=}5$	n=6	n=7
ee	$1/M_{ m S}^4$	2.95	2.63	3.51	2.95	2.66	2.48	2.34
	$1/M_{ m S}^8$	2.82	2.67	3.08	2.82	2.68	2.59	2.52
$\mu\mu$	$1/M_{ m S}^4$	3.07	2.74	3.65	3.07	2.77	2.58	2.44
	$1/M_{ m S}^8$	2.82	2.67	3.08	2.82	2.68	2.59	2.52
$ee + \mu\mu$	$1/M_{ m S}^4$	3.27	2.92	3.88	3.27	2.95	2.75	2.60
	$1/M_{ m S}^8$	3.09	2.92	3.37	3.09	2.94	2.84	2.76
$ee + \mu\mu$	$1/M_{ m S}^4$	3.51	3.14	4.18	3.51	3.17	2.95	2.79
$+\gamma\gamma$	$1/M_{ m S}^8$	3.39	3.20	3.69	3.39	3.22	3.11	3.02

Events with $m_{\parallel} > 1.3 \text{ TeV}$

Process	ee	$\mu\mu$
DY	0.89 ± 0.21	0.54 ± 0.16
$t ar{t}$	< 0.01	< 0.01
Diboson	0.075 ± 0.005	0.059 ± 0.010
${\bf Multi-jet}/W{\bf +jets}$	0.16 ± 0.20	_
Total background	1.13 ± 0.29	0.60 ± 0.16
$M_{\rm S}=1.5~{\rm TeV}$	72 ± 5	47 ± 9
$M_{\rm S}=2.0~{\rm TeV}$	40.2 ± 2.6	22 ± 4
$M_{\rm S}=2.5~{\rm TeV}$	11.7 ± 0.9	6.3 ± 1.1
$M_{\rm S}=3.0~{\rm TeV}$	4.2 ± 0.4	2.3 ± 0.4
Data	2	0

Limits on M_s (TeV) in various ADD models

Inclusive search: Same sign leptons

- Standard model same sign lepton production is rare
- Select events with two well identified, isolated leptons with the same sign
- Can be produced in many BSM models
 - Left-right symmetric
 - Higgs triplet
 - Little Higgs
 - 4th quark family
 - SUSY
 - Extra dimensions
- Main backgrounds:
 - Mis-identification
 - Photon conversion
 - Diboson production
 - Non-prompt leptons
- Form invariant mass
 - Look for resonance

	95% C.L. upper limit [fb]						
Mass range	expected	observed	expected	observed	expected	observed	
	e^{\pm}	e^{\pm}	$e^{\pm}\mu^{\pm}$		$\mu^{\pm}\mu^{\pm}$		
m > 15 GeV	46^{+15}_{-12}	42	56^{+23}_{-15}	64	$24.0^{+8.9}_{-6.0}$	29.8	
m > 100 GeV	$24.1^{+8.9}_{-6.2}$	23.4	$23.0^{+9.1}_{-6.7}$	31.2	$12.2_{-3.0}^{+4.5}$	15.0	
m > 200 GeV	$8.8^{+3.4}_{-2.1}$	7.5	$8.4^{+3.4}_{-1.7}$	9.8	$4.3^{+1.8}_{-1.1}$	6.7	
m > 300 GeV	$4.5^{+1.8}_{-1.3}$	3.9	$4.1^{+1.8}_{-0.9}$	4.6	$2.4^{+0.9}_{-0.7}$	2.6	
m > 400 GeV	$2.9^{+1.1}_{-0.8}$	2.4	$3.0^{+1.0}_{-0.8}$	3.1	$1.7^{+0.6}_{-0.5}$	1.7	
	e^+e^+		$e^+\mu^+$		$\mu^+\mu^+$		
m > 15 GeV	$29.1^{+10.2}_{-8.6}$	22.8	$34.9^{+12.2}_{-8.6}$	34.1	$15.0^{+6.1}_{-3.3}$	15.2	
m > 100 GeV	$16.1^{+5.9}_{-4.3}$	12.0	$15.4^{+5.9}_{-4.1}$	18.0	$8.4^{+3.2}_{-2.4}$	7.9	
m > 200 GeV	$7.0^{+2.9}_{-2.2}$	6.1	$6.6^{+3.5}_{-1.8}$	8.8	$3.5^{+1.6}_{-0.7}$	4.3	
m > 300 GeV	$3.7^{+1.4}_{-1.0}$	2.9	$3.2^{+1.2}_{-0.9}$	3.2	$2.0^{+0.8}_{-0.5}$	2.1	
m > 400 GeV	$2.3^{+1.1}_{-0.6}$	1.7	$2.4^{+0.9}_{-0.6}$	2.5	$1.5^{+0.6}_{-0.3}$	1.8	
	e^{-}	e ⁻	$e^-\mu^-$		$\mu^-\mu^-$		
m > 15 GeV	$23.2^{+8.6}_{-5.8}$	25.7	$26.2^{+10.6}_{-7.6}$	34.4	$12.1_{-3.5}^{+4.5}$	18.5	
m > 100 GeV	$12.0^{+5.3}_{-2.8}$	18.7	$11.5^{+4.2}_{-3.5}$	16.9	$6.0^{+2.3}_{-1.9}$	10.1	
m > 200 GeV	$4.9^{+1.9}_{-1.2}$	4.0	$4.6^{+2.1}_{-1.2}$	4.5	$2.7^{+1.1}_{-0.7}$	4.4	
m > 300 GeV	$2.9^{+1.0}_{-0.6}$	2.7	$2.7^{+1.1}_{-0.6}$	3.5	$1.5^{+0.8}_{-0.3}$	1.7	
m > 400 GeV	$1.8^{+0.8}_{-0.4}$	2.3	$2.3^{+0.8}_{-0.5}$	2.5	$1.2^{+0.4}_{-0.0}$	1.2	

Upper limit on fiducial cross section

