

LRSM: What and Why

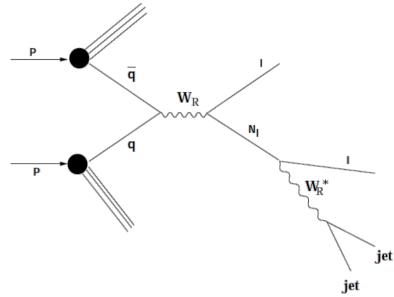
	Standard Model	Left-Right-Symmetric Extension
Gauge group	SU(2) _L X U(1) _Y	SU(2) _L X SU(2) _R X U(1) _{B-L}
Fermions	LH doublets: $Q_L = (u^i, d^i)_L$; $L_L = (l^i, v^i)_L$ RH singlets: $Q_R = u^i_R$, d^i_R ; $L_R = l^i_R$	LH doublets: $Q_L = (u^i, d^i)_{L_i} L_L = (l^i, v^i)_L$ RH doublets: $Q_R = (u^i, d^i)_{R_i} L_R = (l^i, N^i)_R$
Neutrinos	v_R^i do not exist v_L^i are massless & pure chiral	N_R^i are heavy partners to the v_L^i N_R^i Majorana in the Minimal LRSM
Gauge bosons	W_L^{\pm}, Z^0, γ	$W_{L}^{\pm}, W_{R}^{\pm} Z^{0}, Z', \gamma$

Parity Violation, in SM is not explained

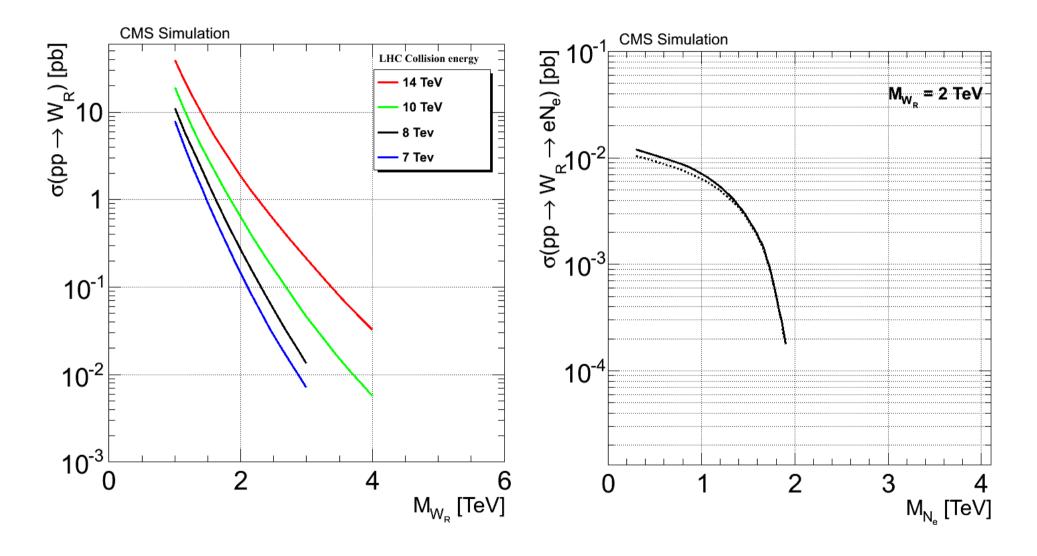
LRSM explains by symmetry breaking at an intermediate mass scale

Neutrino Oscillations ⇒ Mass, turns out to be very small

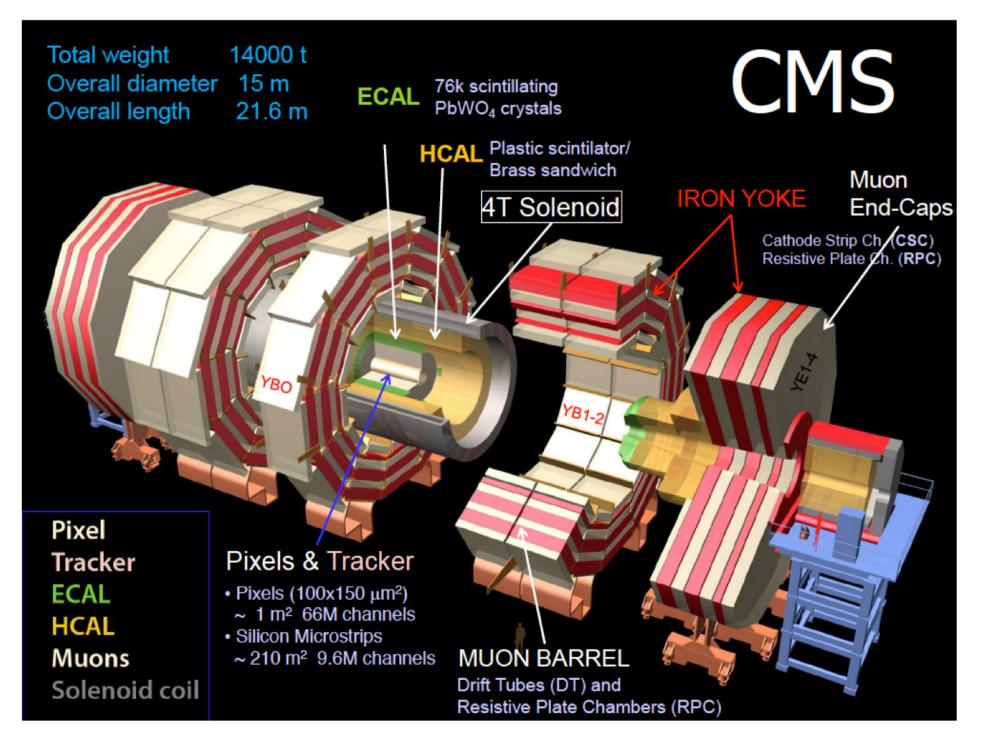
LRSM deploys a "see-saw mechanism" to explain smallness of mass


$$\nu_{heavy} \nu_{light} \sim |< H>|^2$$

LRSM: 6 new particles: W_{R}^{\pm} Z', N_{I} (3 heavy neutrinos)


Signature and channels

- Main production diagram: s-channel from 2 quarks
- No L-R mixing means N_l → off-shell W_R+ l → j j l
- Two-dimensional resonant structure
- Cross sections depend on M(W_R) and M(N), ~ 1 pb at 1 TeV
- Final signature is 2 leptons + 2 jets, $l = e \ or \ \mu$


Cross sections

Existing limits

- Indirect from K_L-K_S mixing: ~2.5 TeV on M(W_R) (model dependent)
- Direct from Tevatron using W_B->qq M(W_B) ~760 GeV
- Direct from Tevatron using W_B->tb M(W_B) ~890 GeV
- Direct from LHC using W_R->tb M(W_R) ~1.85 TeV
- ATLAS: similar analysis, but they only considered the case of degenerate N masses. For this reason they combined electrons and muons and obtained exclusion region up to 2.5 TeV

CMS DETECTOR PERFORMANCE

- 3.8T solenoid
- Silicon tracker:

$$\sigma(p_T)/p_T = 15\%$$
 at 1 TeV

- EMcal: homogeneous Pb-Tungstate crystal $\sigma_E/E = 3\%/\text{sqrt}(E[GeV]) + 0.5\%$
- HADcal: Brass-scint, $7\lambda_0$ $\sigma_E/E=100\%/\text{sqrt}(e[GeV]) + 5\%$
- Muon spectrometer (Resistive Plate Counters, Drift Tubes, Cathode Strip Chambers) in magnet return yoke
- 2-level trigger system L1-> O(100kHz)->L2->~300Hz

Analysis

- Previous analysis using 240 pb⁻¹ (EXO-11-002)
 reported last year
- EXO-11-091 5 fb⁻¹ at 7 TeV CERN-PH-EP-2012-235
- EXO-12-004 5 fb⁻¹ at 7 TeV
- EXO-12-017 +3 fb⁻¹ at 8 TeV

MC signal simulation (PYTHIA)

- Too many mass points needed (up to M(W_R)=3TeV)
- Simulate instead points with M(N) ~ M(W_R)/2
- Use acceptance corrections for other M(N), calculated using generator level simulation
- Checked using several full simulation mass points
- Only one neutrino flavor assumed reachable
- M(W_R) dependent k-factor ~1.30 is used (1.24 < k < 1.33 in the search region). Calculated with the FEWZ program

Triggers

- Double electron trigger with threshold 33 GeV
 (instead of single electron trigger in previous analysis, using it would require a significant increase of the pT cut on electrons). Efficiency estimated using prescaled double photon triggers.
- Single muon triggers with threshold from 24 to 40 GeV depending on the luminocity. Efficiency estimated using tag & probe method using muons from Z (in the peak)
- Trigger efficiency close to 100%.

Physical objects

- Electrons p_T cut 40 GeV. Selection optimized for high p_T. Isolation in tracker and calorimeters required (p_T dependent cuts)
- Muons p_T cut 30 GeV (40 GeV for 2012 8 TeV data).
 Isolation in tracker required (relative cut)
- Jets anti-kt algorithm R=0.5, p_T cut 40 GeV, energy corrections applied

Event selection

Preliminary Selection:

At least 1 lepton and 1 jet

Primary Selection:

At least 2 leptons At least 2 jets p₊ > 40 GeV (two hardest used)

Final Selection:

Electron channel: one electron in the barrel One lepton $p_{T} > 60 \text{ GeV}$

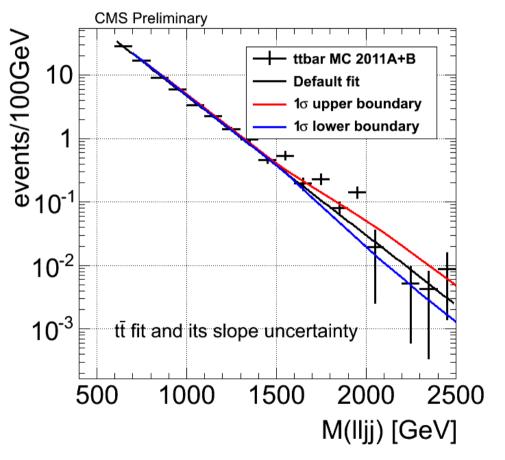
Finally we apply a cut on M_{ll} (mainly against Z+jets) and analyse M_{llj} distribution

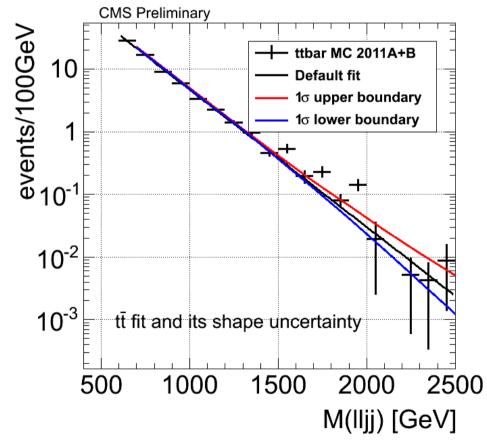
Primary selection efficiency

- Changes from \sim 0.8 for $M_N > 0.5 M_W$ to zero for $M_N < 0.05 M_W$ (N decay products too close to each other)
- Low efficiency for small M_N defines the shape of the lower part of the 2D sensitivity region
- Efficiency slightly smaller (by ~10%) for the electron channel. However, the sensitivity in the electron channel is not worse because the energy resolution is slightly better.

Backgrounds

- Expected from the SM processes with 2 or more real leptons and with jets
- Some contribution from the QCD processes with fake leptons
- Most important backgrounds: tt production, Z+jets
 <u>Normalized to data, shape partly from MC. Use the exponential fits because of small MC statistics at high masses M(lljj), with shape uncertainty</u>
- QCD from data
- Other, small backgrounds: W+jets, ZZ, ZW, WW, tW from MC


Ttbar and Z+jets normalization


- CMS cross section measurement used initially for Ttbar CMS PAS TOP-10-005 (2010)
- Ttbar normalized to data in the control region 250 < M(lljj) < 600 & M(ll) > 120 for the electron channel
- Ttbar normalized to data using electron muon events for the muon channel
- NNLO cross section calculation initially used for Z+jets (made with FEWZ)
- Z+jets renormalized using data and MC in the region of the Z mass peak 60 < M(ll) < 120

Ttbar fits

Slope uncertainty: ±1 σ of the main fit slope, fit separately high M(IIjj) region Shape uncertainty: various exponential functions (M*log(M), M+M², M+M³, c+exp(a+b*M)

QCD BG Electron channel

- Select events with a GSF electron (before used ECAL cluster as a denominator) and a jet, missing $E_{\mathsf{T}} < 20~\text{GeV}$
- Probability to accept a GSF electron as high p_T electron of the analysis is a fake rate
- Contamination from gamma, W subtracted using MC
- Fake rate determined separately in the barrel and endcap
- Select events with 2 GSF electrons and 2 jets and build from them the QCD background sample

Event flow, 7 TeV run

Electron channel

	Data	Signal	Tot.Bg	tŧ	Z+jets	QCD	Other
Primary selection	8896	44	9028	969	7830	61	168
One electron with $p_T > 60 \text{ GeV/}c$	6283	44	6234	779	5277	46	132
At least one electron in Barrel	5516	43	5478	762	4566	32	118
$M_{ee} > 200 \text{ GeV}$	311	42	311	192	92	13	14
$M_{eejj} > 600 \text{ GeV}$	124	42	132	71	48	7	6

Muon channel

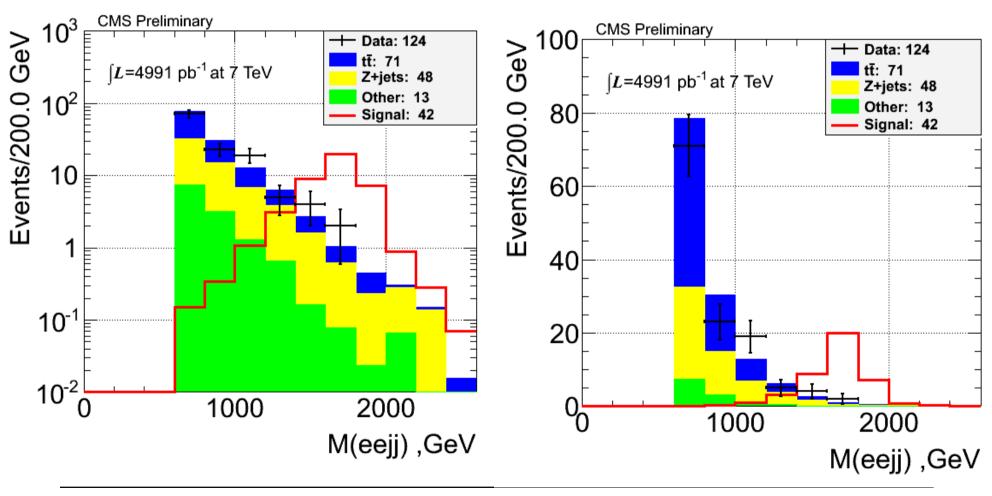
Selection stage	Data	Signal	Total bkgd	tŧ	Z+jets	Other
Two muons, two jets	21769	50	21061	1603	19136	322
$\mu_1 p_{\rm T} > 60 {\rm GeV}$	13328	50	12862	1106	11531	225
$M_{\mu\mu} > 200 \mathrm{GeV}$	365	48	341	211	116	14
$M_{\mu\mu jj} > 600 \mathrm{GeV}$	164	48 ± 13	152 ± 22	81 ± 18	65 ± 9	6 ± 3

Signal here corresponds to the mass point (1800, 1000)

Event flow, 8 TeV run

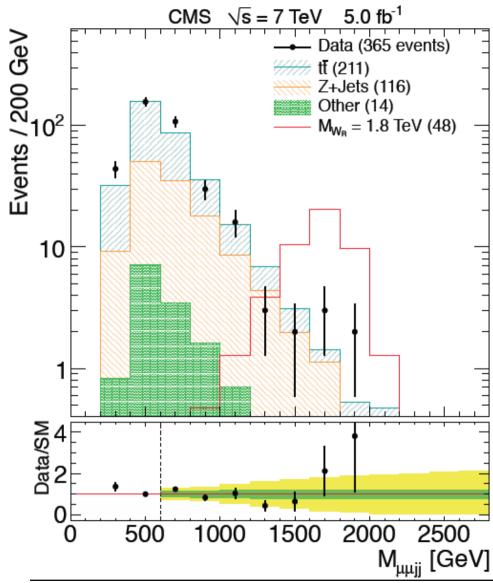
Electron Channel

Selection Stage	Data	Signal	Total Bkgd	t t	Z+jets	QCD	Other
Two electron, two jets	8807	61	8943	968	7821	8	146
$e_1 p_{\rm T} > 60 {\rm GeV}$	6054	61	5905	767	5014	3	121
$M_{ee} > 200 \text{ GeV}$	310	59	296	199	75	3	20
$M_{eejj} > 600 \text{ GeV}$	144	59 ± 12	135 ± 30	83 ± 18	43 ± 23	2 ± 1	9 ± 3

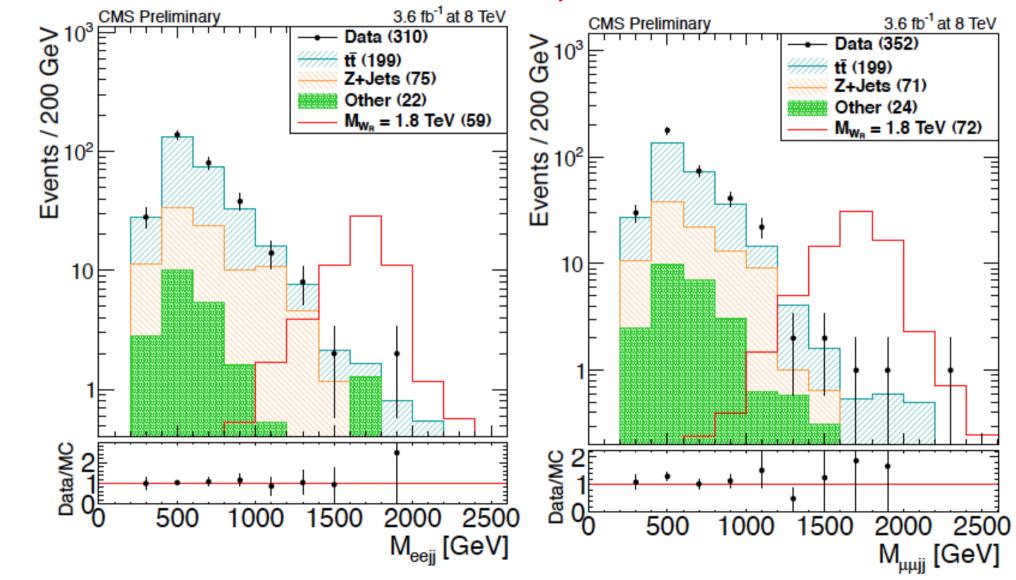

Muon Channel

Selection Stage	Data	Signal	Total Bkgd	t t	Z+jets	QCD	Other
Two muons, two jets	10333	75	10016	968	8830	3	215
$\mu_1 \ p_{\rm T} > 60 \ {\rm GeV}$	7058	75	6873	767	5933	2	171
$M_{\mu\mu} > 200 \text{ GeV}$	352	72	294	199	71	0.7	23
$M_{\mu\mu jj} > 600 \text{ GeV}$	144	72 ± 13	130 ± 24	83 ± 17	35 ± 17	0.7 ± 0.4	11 ± 4

Signal here corresponds to the mass point (1800, 1000)


Distribution, electron channel, 7 TeV

November 2012



Muon channel, 7 TeV

Distributions, 8 TeV run

Systematics, electrons, 7 TeV run

Systematic	Signal				
Uncertainty	eff.	t t	Z+jets	QCD	Other bkgd
Jet Energy Scale	±0.3-9%	±10%	±2%	_	±5%
Jet Energy Resolution	±0-1%	$\pm 0.6\%$	±1%	_	±2%
Electron Energy Scale	±0.1%	$\pm 1.5\%$	±2%	_	±1.2%
Electron Energy Resolution	<0.1%	<0.1%	$\pm 0.5\%$	_	±0.5%
Electron Reco/ID/Iso	±12-17%	±2%	±5%	_	±8%
Trigger Efficiency	±1%	±1%	±1%	_	±1%
Pileup, runs A (B)	±2(11)%	$\pm 2(11)\%$	$\pm 2(11)\%$	_	±2(11)%
Background shape		±20%	$\pm 15\%$	±25%	±25%
N_{signal} , Bkgd normalization	±5-20%	±9%	±3%	_	±6%
ISR/FSR	±1-3%	_	_	_	_
PDF	±8-40%	$\pm 0.4\%$	$\pm 0.4\%$	_	±9%
Fact./Ren. scale	0%	±7%	±5%	_	±8%
QCD estimate	_	_	_	±33%	_
Total	±16-49%	±30%	±21%	±42%	±34%

Systematics, muons, 7 TeV run

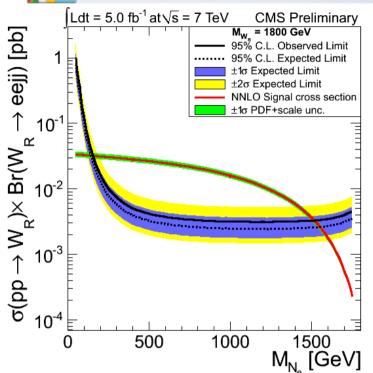
Systematic	Signal				
Uncertainty	eff.	tŧ	Z+jets	QCD	Other bkgd
Jet Energy Scale	±0.3-13%	±9%	±3%	_	±8%
Jet Energy Resolution	± 0 -0.4%	$\pm 0.4\%$	$\pm 0.2\%$	- /	±0.2%
Muon Energy Scale	± 0 -0.4%	$\pm 0.2\%$	±3.0%	/- <	±0.4%
Muon Reco/ID/Iso	$\pm 15 - 18\%$	±3%	±6.0%	-\ \	±7%
Trigger Efficiency	$\pm 0.6 \text{-} 1.5\%$	$\pm 0.2\%$	±0.3%	- \	±4%
Pileup	$\pm 0 \text{-} 0.4\%$	±0.2%	±1.0%	_ `	\±2%
Background shape	_	±15%	±11%		±40%
Simulation statistics	±5-20%	_ `	\-	<i>></i> –	/ 7
Background normalization	- [±9%	±1%	_	±7%
PDF	±8-40%	$\pm 0.4\%$	$\pm 0.4\%$	_	±9%
Fact./Ren. scale, ISR/FSR	±1-2%	±7%	±5%	_	±8%
QCD estimate	\ \ - \ \	-	\-\	±60%	_
Total	±18-50%	±21%	±14%	±60%	±44%

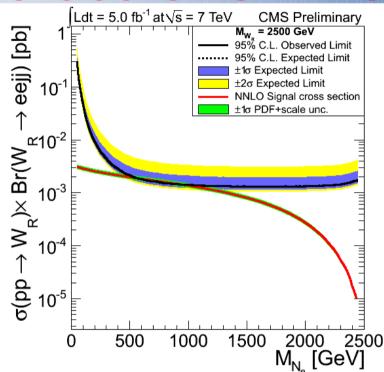
Systematics 8 TeV run

Systematic	Signal				
Uncertainty	eff.	tŧŧ	Z+jets	QCD	Other bkgd
Jet Energy Scale	±0.1-1%	_	±3%	_	±2%
Jet Energy Resolution	±0.1-1%	_	±1%	_	±1%
Electron Energy Scale	±0.1-1%	_	±0.3%	_	±2%
Electron Reco/ID/Iso	±9-10%	_	±0.1%	_	±9%
Trigger Efficiency	±1-2%	_	±0.2%	_	±1%
Background shape	_	±16%	±53%	_	±35%
Simulation statistics	±2%	_	_	_	_
Background normalization	_	±15%	±3%	_	±4%
PDF	$\pm 4 - 22\%$	_	$\pm 0.4\%$	_	±9%
Fact./Ren. scale, ISR/FSR	±1-2%	_	±5%	_	±8%
QCD estimate	_	_	_	±50%	_
Total	±10-24%	±22%	±53%	±50%	±38%

Muon Channel

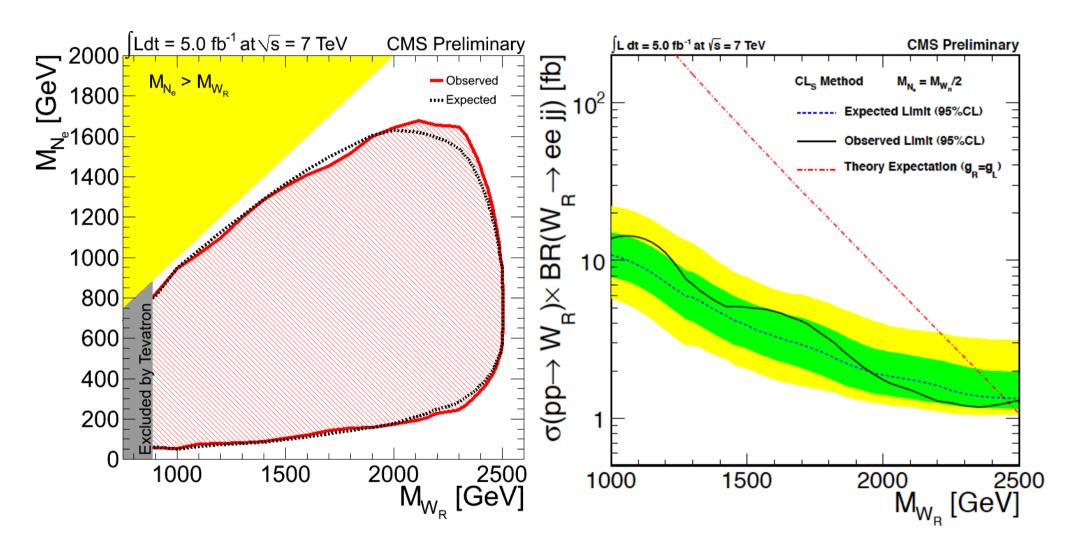
Systematic	Signal				
Uncertainty	eff.	tŧŧ	Z+jets	QCD	Other bkgd
Jet Energy Scale	±0.1-1%	_	±2%	_	±2%
Jet Energy Resolution	±0.1-1%	_	±1%	_	±1%
Muon Energy Scale	±0.1-0.5%	_	±2%	_	±1%
Muon Reco/ID/Iso	±6%	_	±0.1%	_	±6%
Trigger Efficiency	±0.1-0.3%	_	$\pm 0.5\%$	_	±0.1%
Background shape	_	±16%	±49%	_	±30%
Simulation statistics	±2%	_	_	_	_
Background normalization	_	±11%	±3%	_	±4%
PDF	±4-22%	_	±0.4%	_	±9%
Fact./Ren. scale, ISR/FSR	±1-2%	_	±5%	_	±8%
QCD estimate	_	_	_	±50%	_
Total	±8-23%	±20%	±49%	±50%	±33%




Limits setting

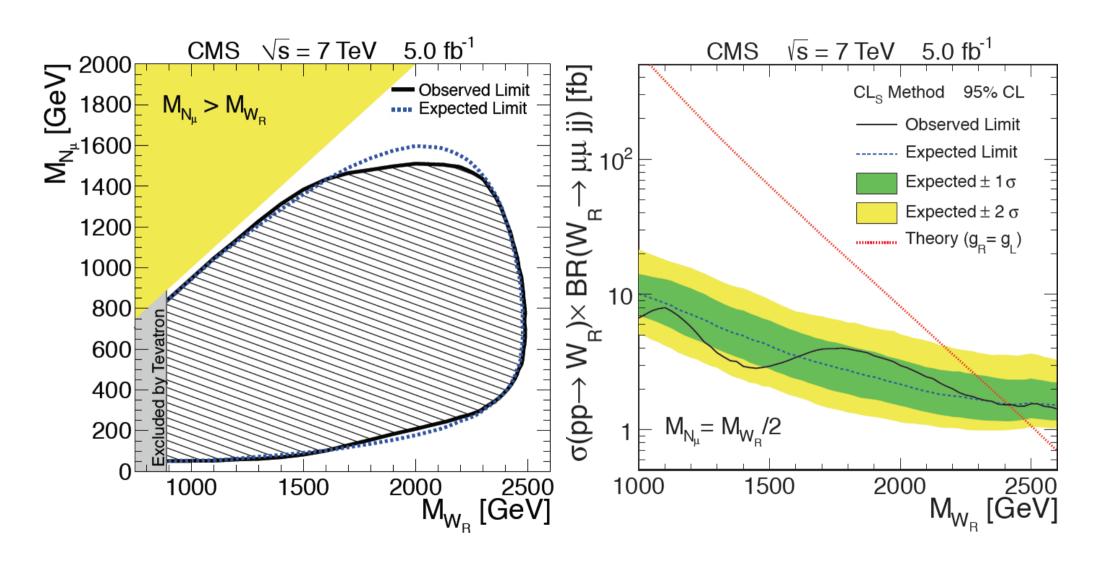
- Multibin limit setting technique based on the RooStats package
- M(*lljj*) as a final variable, in 200 GeV bins, BG systematic errors calculated separately for each bin, this is important for high masses
- CL_S technique for the limits on the signal cross section

1-D Limits electrons 7 TeV

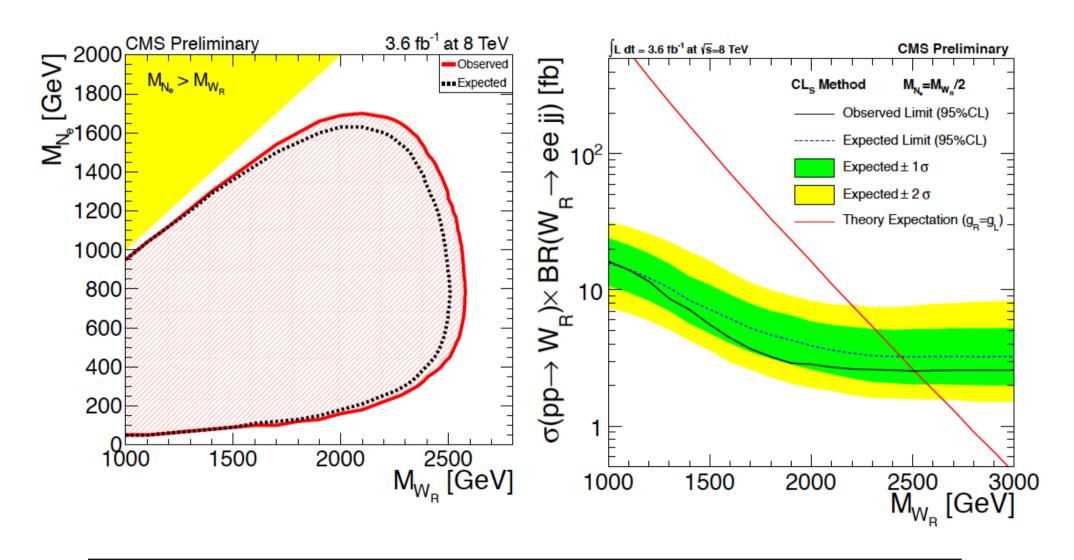


Model Assumptions:

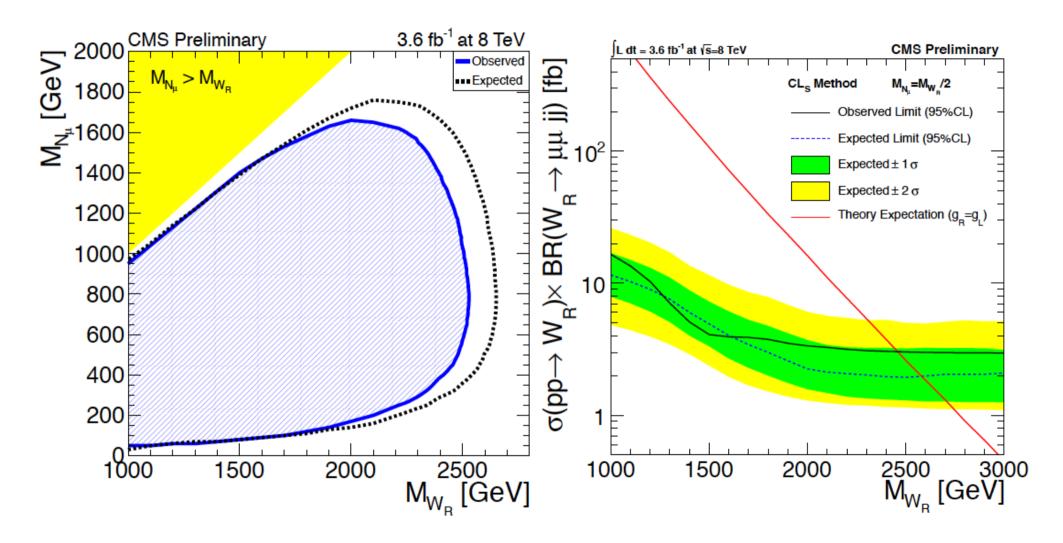
- Small mixing angles between L-R
- $g_R = g_L$ due to LR symmetry
- Right-handed CKM matrix is identical to the lefthanded
- $M_N > M_W$ allowed, but suppressed



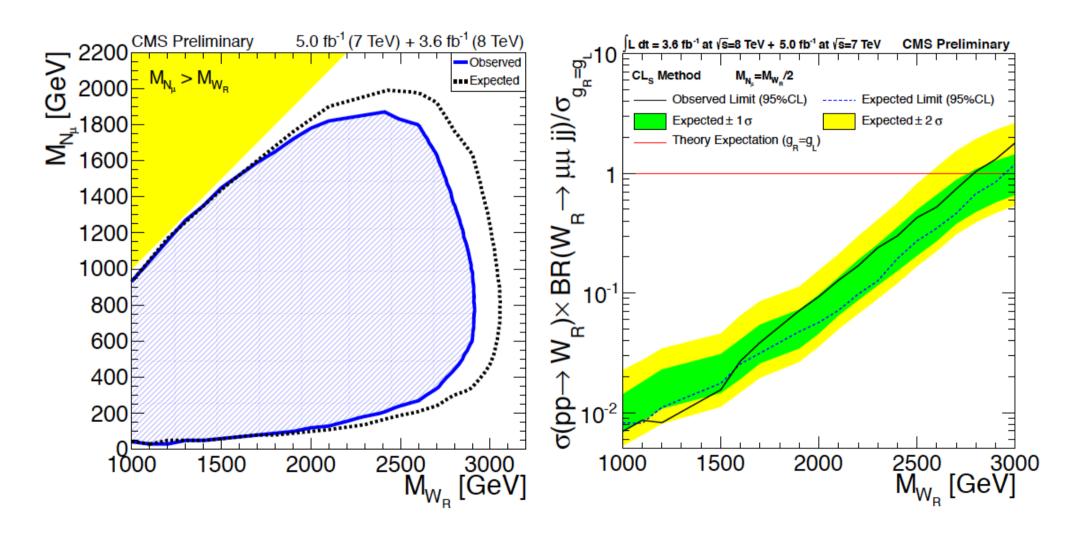
2D Limits electrons 7 TeV



2D Limits muons 7 TeV



2D Limits electrons 8 TeV



2D Limits muons 8 TeV

2D Limits muons 7+8 TeV

Summary

- 5 fb⁻¹ of 7 TeV data and 3.6 fb⁻¹ of 8 TeV data analysed
- The search in two channels is performed: electron and muon
- Data are consistent with the BG expectations
- Regions in the two-dimensional mass plot are excluded up to M(W_R) ~ 2900 GeV