Charmed penguin versus BAU

M.I.Vysotsky

ITEP
LHC on the march, Protvino, November 2012
based on A.N.Rozanov, M.V. JETP Lett. 95 (2012) 397
S.I.Godunov, A.D.Dolgov, A.N.Rozanov, M.V.

JETP Letters 96 (2012) 290

Experimental data

November 2011:

$$
\begin{aligned}
& \Delta A_{C P}^{L H C b} \equiv A_{C P}\left(K^{+} K^{-}\right)-A_{C P}\left(\pi^{+} \pi^{-}\right) \\
& =[-0.82 \pm 0.21(\text { stat. }) \pm 0.11(\text { syst. })] \%
\end{aligned}
$$

where

$$
A_{C P}\left(\pi^{+} \pi^{-}\right)=\frac{\Gamma\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)-\Gamma\left(\bar{D}^{0} \rightarrow \pi^{+} \pi^{-}\right)}{\Gamma\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)+\Gamma\left(\bar{D}^{0} \rightarrow \pi^{+} \pi^{-}\right)}
$$

and $A_{C P}\left(K^{+} K^{-}\right)$is defined analogously. Winter 2012:

$$
\Delta A_{C P}^{C D F}=[-0.62 \pm 0.21 \text { (stat.) } \pm 0.10 \text { (syst.) }] \%
$$

Main Questions

1. Is it possible to have $\left|\Delta A_{C P}\right| \approx 1 \%$ in SM ? NO
2. Is really $\left|\Delta A_{C P}\right|>0.5 \%$?

Soon - much larger statistics (LHCb)
3. Is there any New Physics that allows big CPV in D decays? Yes, the 4'th quark-lepton generation

Diagrams

a)

b)

T and P

It is convenient to present the penguin diagram contribution to $D \rightarrow \pi^{+} \pi^{-}$decay amplitude in the following form:

$$
\begin{gathered}
V_{c d} V_{u d}^{*}\left[f\left(m_{d}\right)-f\left(m_{s}\right)\right]+V_{c b} V_{u b}^{*}\left[f\left(m_{b}\right)-f\left(m_{s}\right)\right], \\
A_{\pi^{+} \pi^{-}}=T\left[1+\frac{P}{T} e^{i(\delta-\gamma)}\right], \\
\bar{A}_{\pi^{+} \pi^{-}}=T\left[1+\frac{P}{T} e^{i(\delta+\gamma)}\right] \\
A_{C P}\left(\pi^{+} \pi^{-}\right)=2 \frac{P}{T} \sin \delta \sin \gamma \\
\sin \delta \sin \gamma \approx 1
\end{gathered}
$$

$$
\begin{gathered}
A_{C P}\left(K^{+} K^{-}\right)=-A_{C P}\left(\pi^{+} \pi^{-}\right) \\
\Delta A_{C P}=4 \frac{P}{T}
\end{gathered}
$$

and let us try to understand if in the Standard Model we can obtain

$$
\frac{P}{T}=1.8 \cdot 10^{-3}
$$

The estimate:

$$
\frac{P}{T} \sim \frac{V_{c c} V_{u b}}{V_{c d}} \frac{\alpha_{s}\left(m_{c}\right)}{\pi} \approx 10^{-4}
$$

factorization

$$
\begin{aligned}
T & =\frac{G_{F}}{\sqrt{2}} V_{c d}<\pi^{+}\left|\bar{u} \gamma_{\alpha}\left(1+\gamma_{5}\right) d\right| 0><\pi^{-}\left|\bar{d} \gamma_{\alpha}\left(1+\gamma_{5}\right) c\right| D^{0}>= \\
& =\frac{G_{F}}{\sqrt{2}} V_{c d} f_{\pi} f_{+}(0) m_{D}^{2}
\end{aligned}
$$

The factorization overestimates T amplitude by the factor $\sqrt{6.2 / 3.4} \approx 1.4$

$$
\begin{gathered}
P=\frac{G_{F}}{\sqrt{2}}\left|V_{c b} V_{u b}^{*}\right| \frac{\alpha_{s}\left(m_{c}\right)}{12 \pi} \ln \left(\frac{m_{b}}{m_{c}}\right)^{2} \frac{8}{9} f_{\pi} f_{+}(0) m_{D}^{2}\left[1+\frac{2 m_{\pi}^{2}}{m_{c}\left(m_{u}+m_{d}\right)}\right] \\
P / T \approx 9 \cdot 10^{-5}
\end{gathered}
$$

$B \rightarrow \pi^{+} K^{0}$

$s \rightarrow d$ penguin transition changes the isospin by $1 / 2$ in this way explaining the famous $\Delta I=1 / 2$ rule in $K \rightarrow \pi \pi$ decays.
Calculation of $K_{S} \rightarrow \pi^{+} \pi^{-}$decay amplitude generated by a penguin transition using the factorization underestimates the amplitude by factor 2-3.

In view of the results for B and K decays we can cautiously suppose that for $D \rightarrow \pi^{+} \pi^{-}$decay factorization calculation underestimates the penguin amplitude by factor 5 at most leading to:

$$
\left(\Delta A_{C P}^{\text {theor }}\right)_{S M} \leq 0.2 \%
$$

fourth generation

$$
\Delta P=V_{c b^{\prime}} V_{u b^{\prime}}\left[f\left(m_{b^{\prime}}\right)-f\left(m_{s}\right)\right]
$$

$m_{b^{\prime}} \gtrsim 600 \mathrm{GeV}$.

$$
\begin{aligned}
\frac{P_{4}}{P_{S M}}= & \frac{\ln \left(m_{W} / m_{c}\right)}{\ln \left(m_{b} / m_{c}\right)} \frac{\left|V_{c b^{\prime}} V_{u b^{\prime}}^{*}\right|}{\left|V_{c b} V_{u b}\right|} \frac{\sin \left(\arg V_{c b^{\prime}} V_{u b^{\prime}}^{*}\right)}{\sin \gamma} \approx \\
\approx & 3.3 \frac{3 \cdot 10^{-4}}{1.5 \cdot 10^{-4}} \approx 6 \\
& \left(\Delta A_{C P}^{\text {theor }}\right)_{4 G} \approx \Delta A_{C P}^{\text {exper }}
\end{aligned}
$$

is possible.

Saving baryon number by the long-lived fourth

 generation neutrinoAs it was noted in
H. Murayama, V. Rentala, J. Shu, T. Yanagida, Phys. Lett. B 705 (2011) 208
the long-lived fourth generation particles save baryon asymmetry generated at the Early Universe from erasure by the sphaleron transitions.
The sphaleron transitions conserve $B-L$, that is why if at the Early Universe $B_{0}=L_{0} \neq 0$ are generated, then the final baryon and lepton asymmetries proportional to $B-L$ are completely erased. If the fourth generation particles weakly mix with three quark-lepton generations of the Standard Model, then two additional quantities are conserved: $B_{4}-L_{4}$ and $L-3 L_{4}$, where B_{4} and L_{4} are the densities of baryons and leptons of the fourth generation, while B and L are the densities of baryons and leptons of three light generations.

Choosing the initial asymmetries $B_{0}=L_{0}=3 \Delta, B_{4}^{0}=L_{4}^{0}=0$ and since $L-3 L_{4}=3 \Delta \neq 0$ then the $B+B_{4}$ number density at the sphaleron freeze-out temperature proportional to linear superposition of conserved quantities is nonzero. After sphaleron freeze-out $B^{\prime} \equiv B+B_{4}$ is conserved and equals the modern baryon density of the Universe.
For such a scenario to occur the lifetimes of the fourth generation quarks and leptons should be larger than the lifetime of the Universe at the sphaleron freeze-out: $\tau_{4}>M_{\mathrm{Pl}} / T_{\mathrm{sph}}^{2} \sim 10^{-10} \mathrm{sec}$. For the mixing angles in case of $b^{\prime} \rightarrow(c, u) W$ decay it gives $\theta<10^{-8}$, much smaller than what we need to explain large CPV in D-decays SO WE SUPPOSE THAT ONLY 4 GENERATION LEPTONS WEAKLY MIX WITH OURS.

Figure: The final baryon asymmetry versus the initial asymmetry $n_{B^{\prime}} / \Delta$ as a function of sphaleron freeze-out temperature $T_{\text {sph }}(\mathrm{GeV})$ for the unmixed fourth generation is shown by a dashed blue line. It is analogous to the figure from H Murayama et al., but for $m_{N}=57.8 \mathrm{GeV}, m_{E}=107.6 \mathrm{GeV}$, $m_{t^{\prime}}=634 \mathrm{GeV}, m_{b^{\prime}}=600 \mathrm{GeV}$. The final baryon asymmetry for the case of the mixed fourth generation quarks and the unmixed fourth generation leptons is shown by a solid green line.

Higgs versus 4th generation

$\sigma(g g \longrightarrow H)_{4 G} \approx 9 \sigma_{S M} \Longrightarrow$
$\sigma * \operatorname{Br}\left(H \rightarrow V V^{*}\right)$ too large.
Way out: $M_{Z} / 2<M_{N}<M_{H} / 2$.

But: $\operatorname{Br}(H \rightarrow \gamma \gamma)$ heavily suppressed:
$(7-16 / 9-16 / 9(1+1 / 4+3 / 4))^{2} /(7-16 / 9)^{2} \approx 0.1$

Way out: 2HDM with Fourth Family (Chen, He, 2012)

Conclusions

- $\Delta A_{C P}$ of the order of 1% is not possible in the SM ;
- New Physics (in particular, 4th generation) can produce $\Delta A_{C P} \sim 1 \%$;
- if the 4th generation leptons weakly mix with the leptons of three light generations then $B_{0}=L_{0}$ generated in the Early Universe will not be erased by sphalerons.
- LHC higgs data: 2HDM?

