Jet Production in Association with Vector Bosons at CMS

Matteo Marone

on behalf of the CMS Collaboration

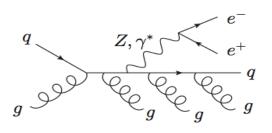
IHEP, Protvino (RUS) 22 November 2012

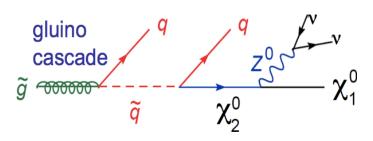
Outline

- **Motivations**
- CMS Detector and Particle Reconstruction
- Common Analysis Tools used in Vector Boson + Jets
- Topics in this presentation:
 - Rate of Jets Produced in Association with W and Z Bosons in pp Collisions at $\sqrt{s} = 7 \text{ TeV}$
 - Measurement of the Z+b Jet Cross Section
 - Azimuthal Correlations and Event Shapes in Z + Jets Production

Jet Production in Association with Vector Bosons

Conclusions





Physics Motivations

The associated production of a boson and jets is a test of the Standard Model (SM)

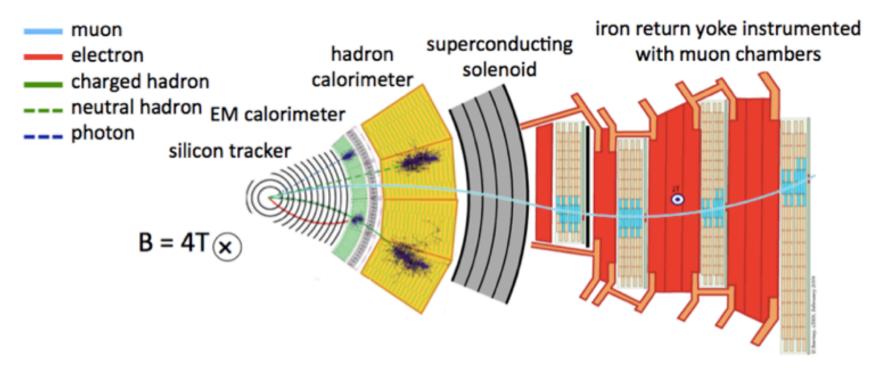
- Test the perturbative Quantum Chromodynamics predictions (pQCD)
 - NLO calculation available for the Z/W boson
 - Data driven method to tune different theoretical models of the process
- SM Background to New Physics processes
 - Huge variety of processes involving multiple jets in searches
 - SUSY (gluino cascades), Dark Matter, 4th generation

- SM Background to Higgs Physics (HZ with H to bb pair, ZZ to lepton+jets...)
- Constraints to Parton Density Function (PDF), at various center of mass energies

Other motivations

- Can be also useful for detector calibrations:
 - Jets recoiling against a Z can be utilized to calibrate the jet energy
- It is an important test bench to probe a wide number of MC generators:

Jet Production in Association with Vector Bosons

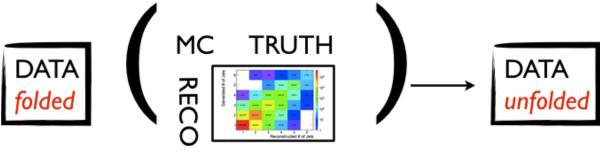

- Leading Order (LO) MC + Matching Parton Shower (PS):
 - Alpgen, MadGraph, Sherpa
- Fixed Order Next-to-Leading Order (NLO):
 - aMC@NLO, BlackHat
- Fixed Order NLO + PS:
 - Powheg, Pythia (Z+>= | Jet)

	3+ years ago	today
W/Z	NNLO	NNLO
V+1j	NLO	NLO+PS
V+2j	NLO	NLO
V+3j	LO	NLO
V+4j	LO	NLO
V+5j	LO	NLO soon

CMS Detector

- Significant improvement due to Particle Flow Algorithm that uses information from all subdetectors
 - muons, electrons, photons, charged and neutral hadrons
 - the list is used to reconstruct higher level objects like jets, MET
 - electrons: tracks matched to clusters in EM calorimeter
 - muons: minimum ionizing tracks, penetrate deep into muon system
 - jets / H_T: constructed with combined tracking + calo info
 - MET: constructed with combined tracking + calo info, hermetic detector

5 /25

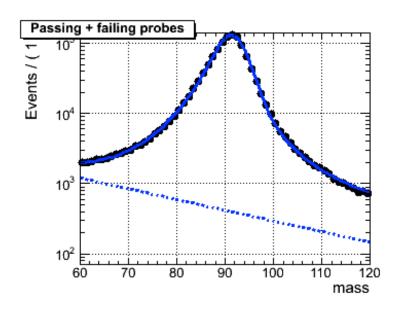


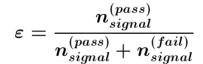
General Strategy

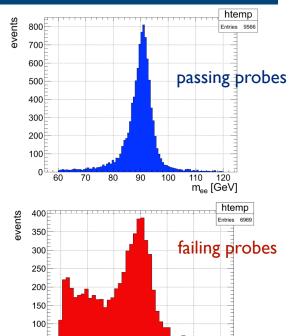
 In order to measure cross sections, the following quantities have to be evaluated:

$$\frac{d\sigma}{dx} = \frac{\left(N_{data} - N_{bkg}\right)}{\varepsilon \times L \times \Delta x}$$

- Estimate background contribution and efficiencies
- Unfold in order to bring back results at particle level


Apply photon and lepton recombination





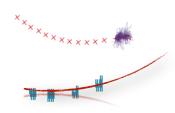
Tag And Probe (TAP) Method

- Efficiencies evaluated with the data driven Tag & Probe method:
 - select Z candidates sample by requiring a "tag" electron with very tight requirements
 - the second "probe" electron is used to test the event selection efficiency. The invariant mass of the two electrons is then computed in a window around the Z mass
 - filled different distributions for passing and failing

• Perform a **simultaneous** fit to the "passing" and "failing" distributions to extract the efficiencies

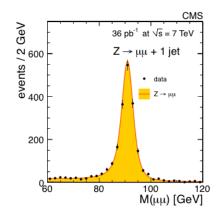
50

Matteo Marone


Event and Jet Selection

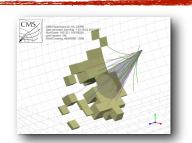
Bosons

• Electrons: $p_T > 20$ GeV, $|\eta| < 2.4$ (no crack)

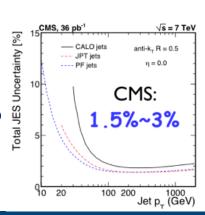

• Muons: $p_T > 20 \text{ GeV}, |\eta| < 2.4$

Subtract PU ("p Fast Jet Method")

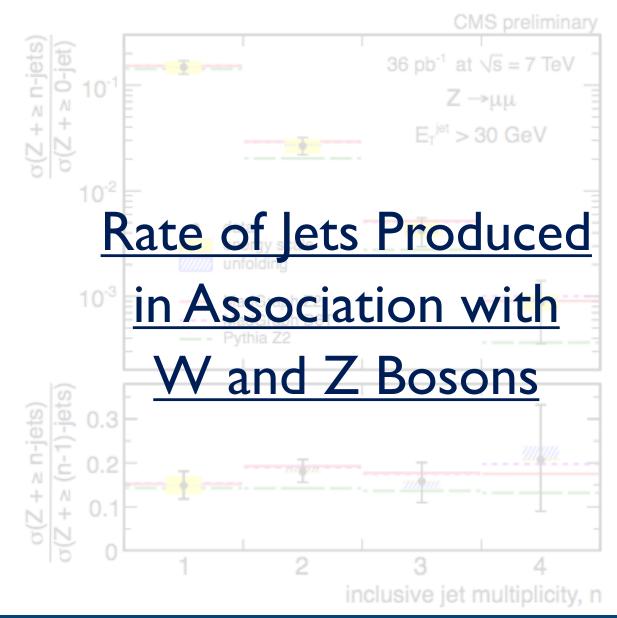
Isolation Criteria


 Z: Lepton opposite charge, cuts on lepton invariant mass

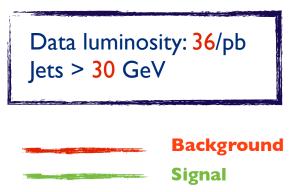
• W: cut on missing energy (using M_T variable)

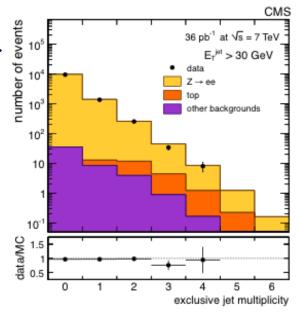


 $M_T = \sqrt{(2p_{TL} \not E_T (1 - \cos \Delta \Phi))}$



- Correct for the Jet Energy Scale
- Anti-KT jets in $|\eta|$ < 2.4 (2.1) Δ R=0.5
- Separation lepton-jet required





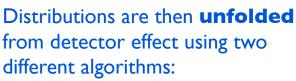
Analysis Peculiarities

Generator	Process	σ (pb)
MADGRAPH	$W \rightarrow \ell \nu$	3.1×10 ⁴ (NNLO)
MadGraph	$Z ightarrow \ell^+ \ell^-$	3.0×10 ¹ (NNLO)
MadGraph	$t\bar{t}$	1.6×10 ² (NLO)
MadGraph	single top tW channel	1.1×10 ¹ (LO)
MadGraph	single top s and t channels	3.5 (NLO)
PYTHIA	$W \rightarrow e\nu$	8.2×10 ³ (NNLO)
PYTHIA	$W \rightarrow \mu \nu$	7.7×10 ³ (NNLO)
PYTHIA	$W \rightarrow \tau \nu$	1.0×10 ⁴ (NNLO)
PYTHIA	$Z ightarrow \ell^+ \ell^-$	5.0×10 ³ (NNLO)
PYTHIA	Inclusive μ QCD	3.4×10 ⁵ (LO)
PYTHIA	EM-enriched QCD	5.4×10 ⁶ (LO)
PYTHIA	b/c → e	2.6×10 ⁵ (LO)
PYTHIA	γ +jet	8.5×10 ⁷ (LO)

- The following observables are presented:
 - W and Z (called "V") + N jets cross section (σ) over the inclusive σ_W or σ_Z
 - $-\sigma_{(V+(n-1) jets)}/\sigma_{(V+n jets)}$
 - "Berends-Giele" Scaling
 - Ratio of the W to Z σ Vs Jet Multiplicity
 - W charge asymmetry Vs Jet Multiplicity
- In general, "ratios" preferred to reduce total uncertainties

Analysis Procedure

- Results quoted within the acceptance (no correction)
- Efficiencies extracted from data using TAP method (see previous slide)

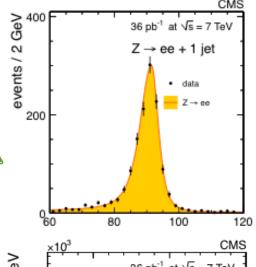

Signal and background yields estimated using a Maximum-Likelihood fit at

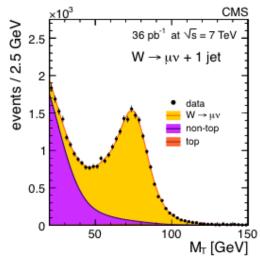
the M_{\parallel} (Z) or M_{\top} (W):

 number of the initial observed events inserted as constraint normalization

• prob. distributions in the fit are asymmetric Gaussian with tails

 parameters derived from simulation or from control data samples

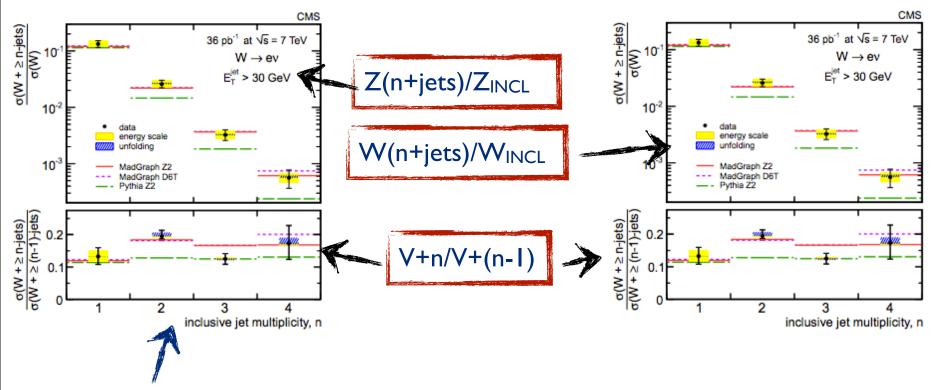



- Bayes
- Single Value Decomposition

MadGraph used to train the response matrix

Main systematics:

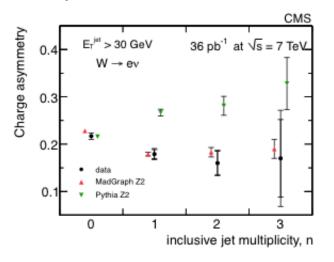
- Jet Energy Scale **5-15**%
- Unfolding < 10 %
- Sel. Efficiency < **3-4**%
- Signal Extraction I-I0%

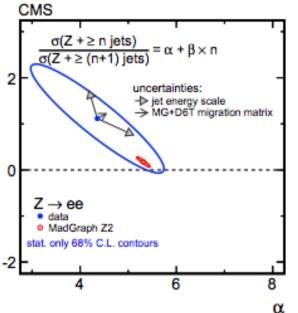


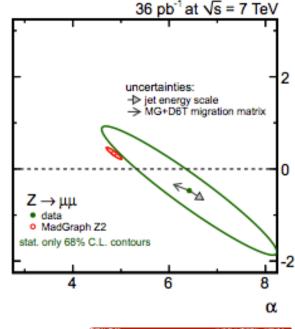
11/25

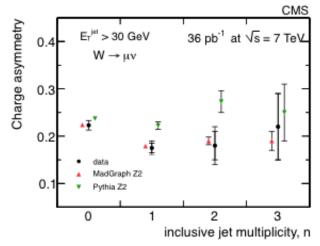
Results (1)

- For $n \ge 2$ jets, the Pythia pure parton shower simulation fails to describe the data, while the MadGraph simulation agrees well with the experimental spectrum.
- Because of the jet E_T threshold, underlaying event tuning (---- or ——) play a negligible role



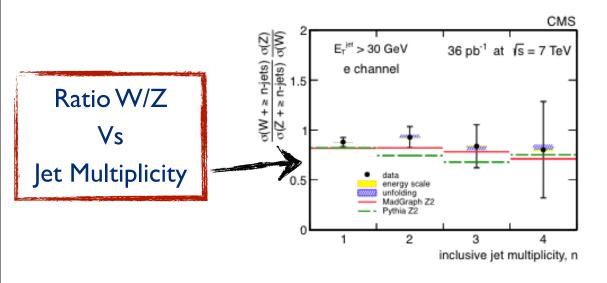

Results (2)

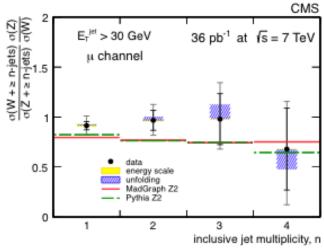

β


Berends-Giele

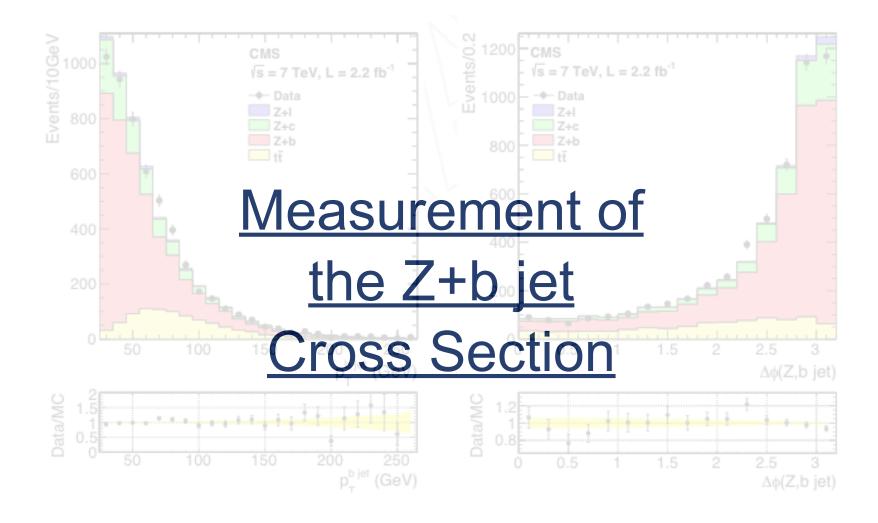
- Observable used to test the constant scaling law of $Z(N-1)/Z(n) = \alpha$
- Inserted additional parameter
 (β) to allow for possible deviation
- Good Agreement MC/DATA, β compatible with 0

W Asymmetry
Vs Jet Multiplicity

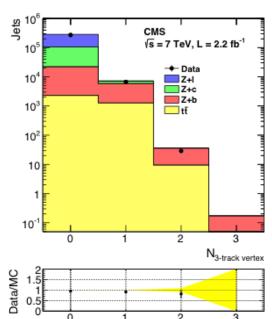

 Good Agreement with MadGraph, bad with Pythia

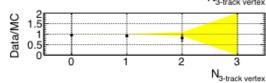

$$A_{\rm W} = \frac{\sigma({
m W}^+) - \sigma({
m W}^-)}{\sigma({
m W}^+) + \sigma({
m W}^-)}$$

Results (3)



- Systematic uncertainties (int. luminosity and jet energy scale) cancel in the ratio.
- The maximal difference observed between the measured and expected values is at the level of one standard deviation
- This analysis is being updated at 5/fb, adding differential cross sections (jet P_T , H_T , η)




Analysis Details

- Data: 7 TeV data (2.2/fb)
- Jet $P_T > 25$ GeV, $|\eta| < 2.1$ (to optimize the "b-tagging")
- Aim to measure the inclusive cross section $Z/Y^*(II)$ + b-jets, regardless additional non-bflavoured jets

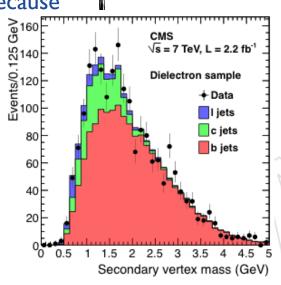
Jet Production in Association with Vector Bosons

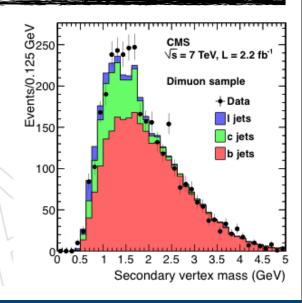
- lets from b are tagged taking advantage of the long b-hadron lifetime, using the "Simple Secondary" Vertex" discriminator (based on decay length significance)
- Z+Jets sample is divided in 3 subsamples:
 - underlaying production of b jets (Z+b)
 - underlaying production of c jets (Z+c)
 - underlaying production of "light" u,s,d jets (Z+I)
- Background:
 - ttbar
 - QCD multijet, W+Jets, WW and WZ negligible
 - Irreducible ZZ and associated production of W and t negligible

16/25

Cross Section @ Hadron Level

• The cross section for the production of a \mathbb{Z}/γ^* boson in association with at least I hadron-level b is given by:

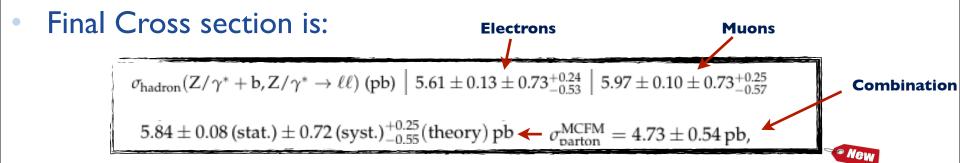

$$\sigma_{\rm hadron}(Z/\gamma^* + b, Z/\gamma^* \to \ell\ell) = \frac{N(\ell\ell + b) \times (\mathcal{P} - f_{t\bar{t}})}{\mathcal{A}_{\ell} \times \mathcal{C}_{\rm hadron} \times \varepsilon_{\ell} \times \varepsilon_{\rm b} \times \mathcal{L}}$$

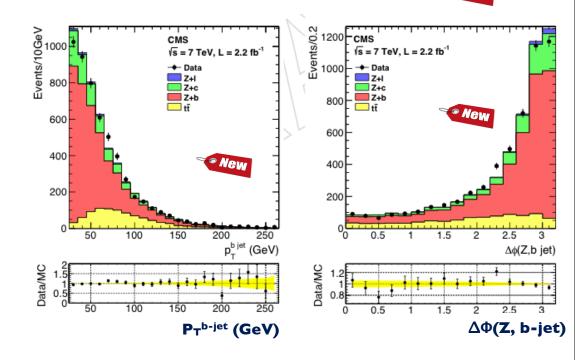

- **Purity (P)**: estimated from the secondary vertex mass distribution, extracting the P from data using a template trained on MC.
- Ftt is the fraction of tt events, because

real b arise from tt. tt extrapolated from sideband

Variable	Electron	Muons
Purity	83.4±3.6	81.5±2.9
F _{tt}	18.7+2.2	18.4±2.3
٤ _b	35.3±3.5	34.9±3.5
٤ _{Lepton}	63.2 ± 2.6	84.4±1.7
C _{Hadron}	84.2+5.8-0.6	95 ^{+6.6} -0.5
Aı	55 ^{+3.6} -2.1	57.2 ^{+3.7} -2.4

- A_I: Acceptance (Sherpa, MCFM)
- ε_b: B-tagging efficiency (MC correct to match data)
- ε_I: Lepton efficiency
- Chadron: Correction factor for detector resolution (comparison event yield/generator level)

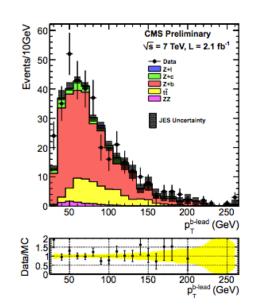


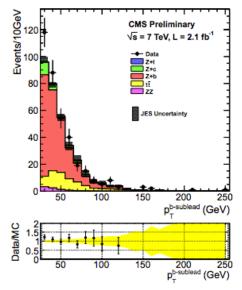


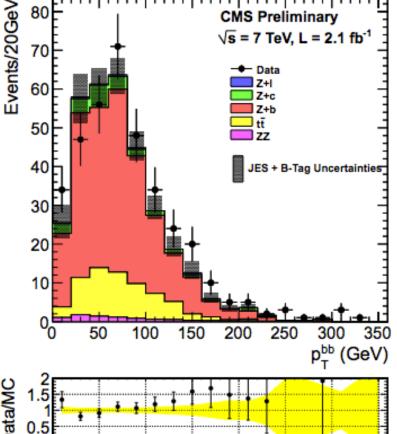
Results

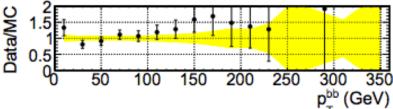
Main systematics are:

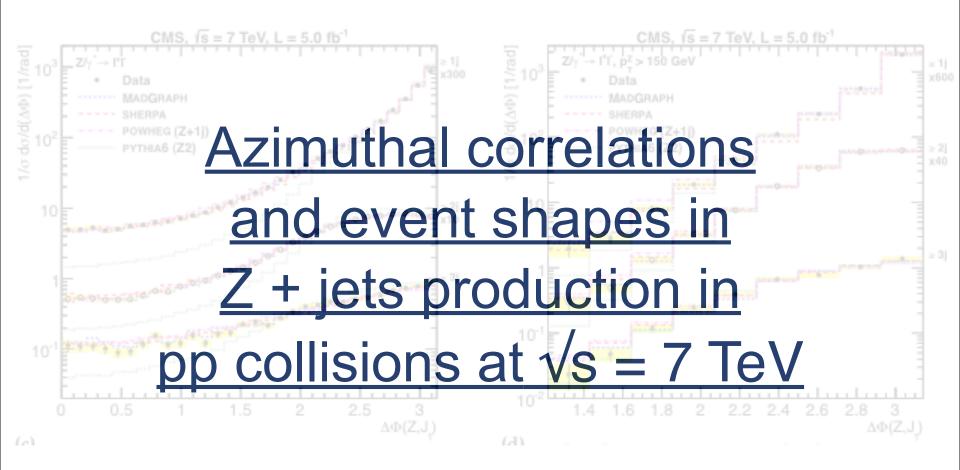
- b-jet purity ~5%
- b tagging efficiency 10%
- Luminosity 2.2%
- tt contribution 3%
- Jet Energy Scale 3%
- Trigger and Lepton sel. 4%






Z+bb Analysis


Cross section for one Z boson in association with exactly one or at least two b quarks


Multiplicity Bin	Electrons	Muons
σ _{hadron} (Z+1b)	3.25±0.08±0.29	3.47±0.06±0.27
(pb)	±0.06	±0.11
σ _{hadron} (Z+2b)	0.39±0.04±0.07	0.36±0.03±0.07
(pb)	±0.02	±0.03

Analysis Peculiarities

- Data: 5.0/fb taken at 7 TeV from 2011 data
- Event Selection: Jets > 50 GeV
- MC "Signal" (named "Z+Jets"):
 - MadGraph (up to the fourth jets + pythia)
 - SHERPA (up to the fourth jet)

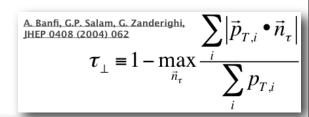
- MC Backgrounds:
 - ttbar
 - W+lets
 - dibosons (WW,WZ,WW)

- Studies published by the Tevatron (D0) and ATLAS: extended the frontier to higher jet multiplicity (three jets)
- Theory/data comparison for boosted Z bosons ($p_T > 150 \text{ GeV}$) -> **phase** space very critical for searches for new phenomena based on large imbalanced system

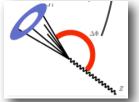
First study of variables categorizing the topological structure of Z+Jets ("Event Shapes") suitable to **tune parton shower** or fragmentation functions.

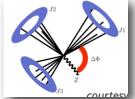
Jet Production in Association with Vector Bosons

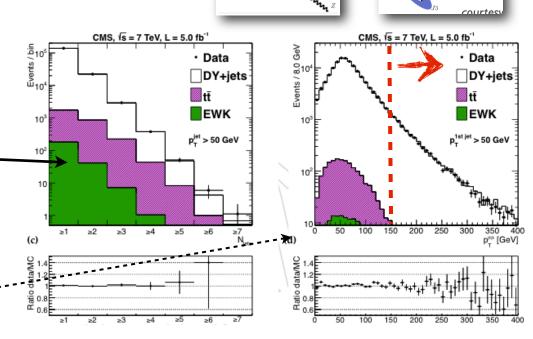
21/25


Observable Quantities

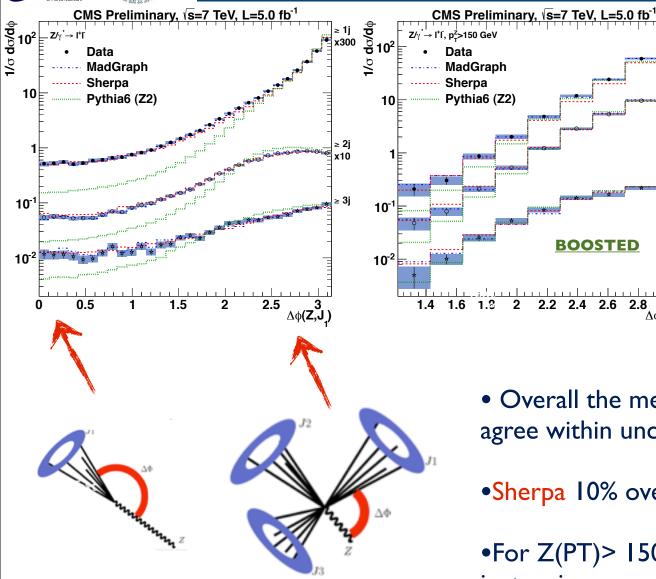
- Differential cross section as a function of:
 - azimuthal angles $\Delta \Phi(Z,J_i)$ i = 1,2,3
 - $\Delta \Phi(J_i,J_k) i,k = 1,2,3$
 - transverse thrust


In the limit of a **perfectly balanced** (pencil-like) Z + I Jet tends to **zero**. With additional jets, the value increases. The largest possible value is reached in the limit of a spherical, homogeneously-distributed event.


To investigate the dependence of the topological properties on the complexity of the final state, events categorized as a function of the Jet Multiplicity.


Measurement performed also in the boosted regime ($Z(P_T) > 150 \text{ GeV}$)

Pencil-like: $\tau_{\perp} \sim 0$ Spherical: $\tau_{\perp} \sim 1 - 2/\pi$

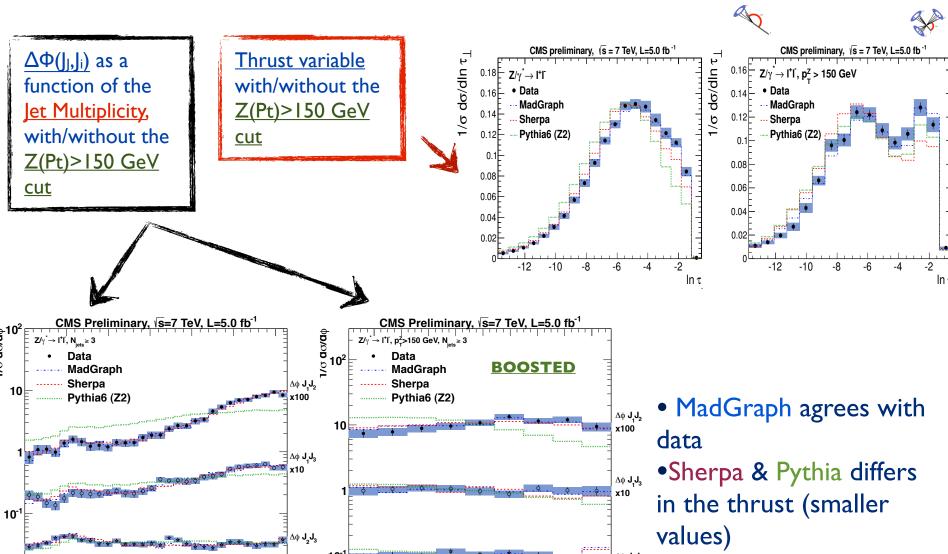


Results (1)

 $\Delta\Phi(Z,J_i)$ as a function of the let Multiplicity, with/without the <u>Z(Pt)>150 GeV</u> cut

- Overall the measured distributions agree within uncertainties with MadGraph
- •Sherpa 10% overshoot

BOOSTED


2.2 2.4 2.6

•For Z(PT)> 150 GeV, system more isotropic

Results (2)

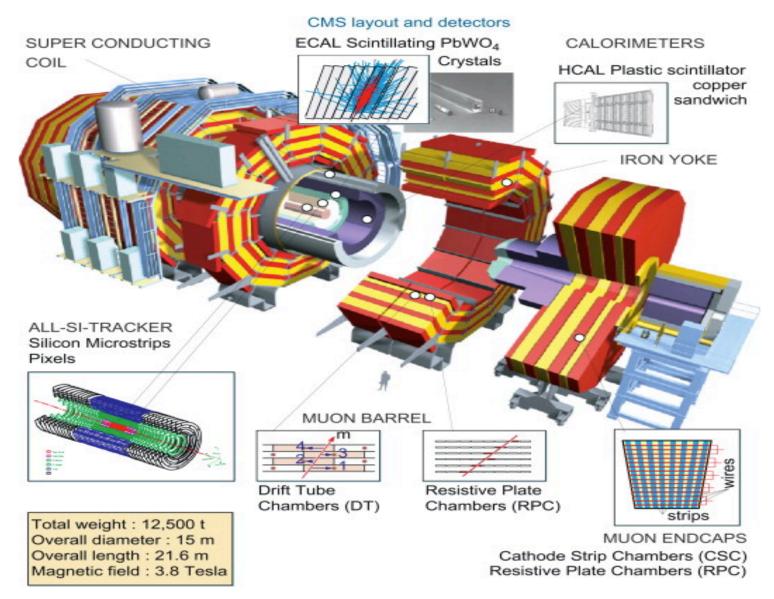
24/25

2.2 2.4 2.6 2.8

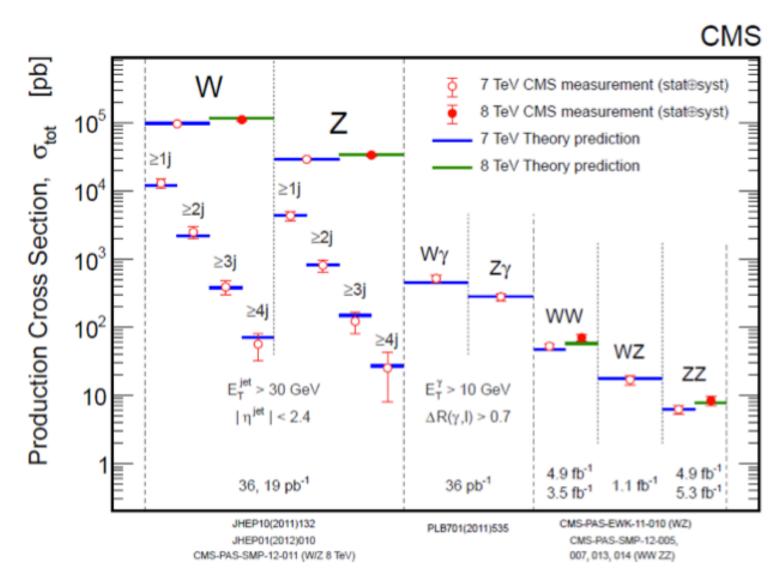
Conclusions

- Presented a selection of results on the production of vector bosons and jets. More details can be found here:
 - Jet Rate With W and Z Bosons → arXiv:1110:3226
 - Azimuthal correlation and event shape \rightarrow (*)
 - Zb cross section measurement → arXiv:1204:1643
- In general, good agreement data/MC over a large number of observables investigated so far
- Several promising analyses will be carried on in the future, taking advantage from a higher statistics and center-of-mass energy
 - (*) https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEWK11021?skin=drupal

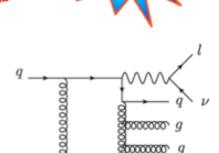
Jet Production in Association with Vector Bosons


Backup

<u>Backup</u>


CMS Detector

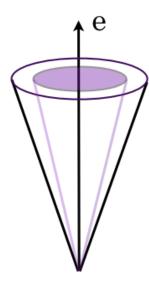
Standard Model @ CMS



Review of MC in the market

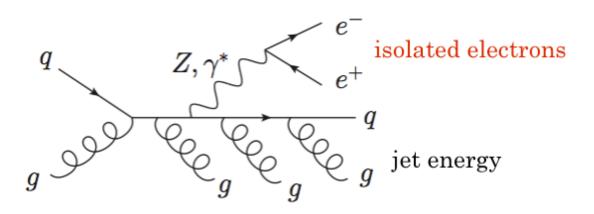
- LO matrix element + matching to parton shower (PYTHIA, HERWIG)
 - ALPGEN, MADGRAPH, SHERPA (CKKW or MLM matching)
- Fixed-order NLO calculation
 - Blackhat-Sherpa: NLO up to $Z + \ge 4$ jets $W + \ge 5$ jets
 - Rocket + MCFM: NLO up to W/Z + ≥3 Jets
 - MCFM: NLO up to W/Z + \geq 2 Jets
- Fixed-order NLO + parton shower for Z+ ≥ I Jet
 - POWHEG + PYTHIA
- Resummation
 - HEJ: all-order resummation of perturbative contribution of wide angle emission (for ≥2 Jets)
- Approximate NNLO for Z+ ≥ I Jet
 - LOOPSIM+MCFM, JHEP 1009 (2010) 084
- NLO QCD ⊗ NLO EW
 - JHEP 1106 (2011) 069

Rho Fast-Jet Method


Isolation

$$Iso = \left[\sum_{ECAL, HCAL, TRK}^{\Delta R < 0.3} E_T\right] - p_T^e$$

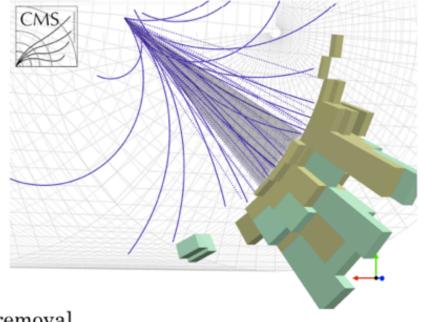
Isolation pile-up corrected

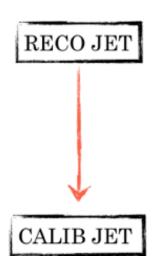

Rho FastJet Method

$$Iso_{PUR} = Iso - \rho S$$

$$\Delta \mathbf{R} = [(\Delta \, \eta)^2 + (\Delta \varphi)^2]^{1/2}$$

- Q = energy density
 energy per unit of area
 in the jet
 (PU energy event by event)
- S = effective area jet area weighted with iso dependence wrt vtxs

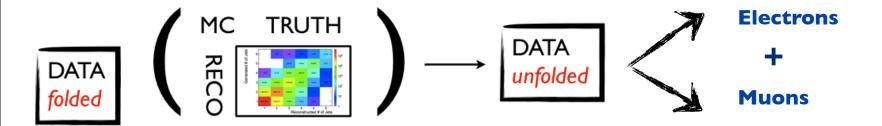

Jet Energy Corrections


Jet reconstruction in CMS: Particle Flow combines information from all CMS sub-detectors

- simply:
 Jets energy is difficult to measure.
- Main issue: correct the jet energy

HCAL response

In CMS decompose correction into indipendent factor then apply in a fixed sequence (levels)

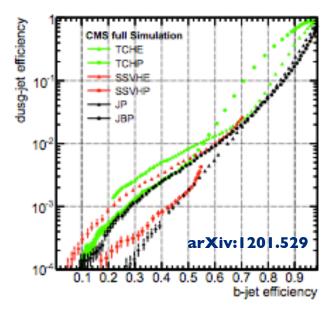


From detector to particle level

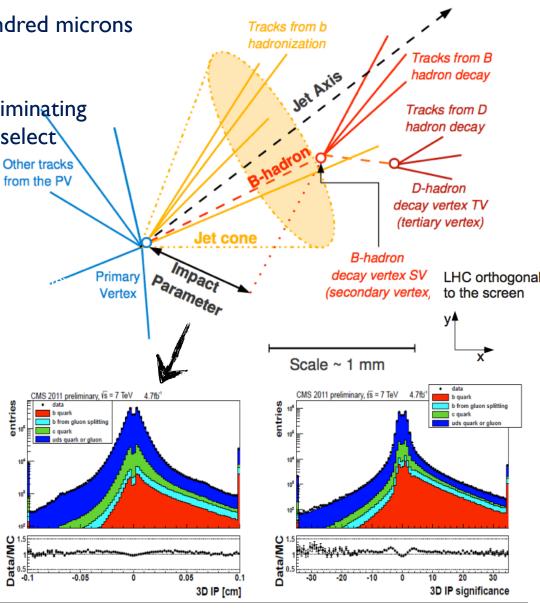
- After the event selection, the following steps are done:
 - Background subtraction:
 - Via MC prediction for minor backgrounds (dibosons and W+Jets).
 - TTbar prediction cross checked using a eµ sample in data
 - Unfolding: background subtracted events (detector level) are mapped at particle level through the unfolding procedure and efficiency correction.
 - Generated jets are formed in the <u>same way</u> as the detector (including FSR)
 - Combination done using the best linear unbiased estimator

Jet Production in Association with Vector Bosons

32/25



B Tagging in a nutshell


• Typical IP order of magnitude is few hundred microns (IP uncertainty ~10-100 um)

• Use Track IP significance $S = IP / \sigma_{IP}$

• In the SSV algorithm S is used as a discriminating variable on which the user can cut on to select different regions in the efficiency versus of the tracks from the PV purity phase space.

Analysis Working Point: (mis)tagging fakes (udsg) jets estimated to be 1%

