ALICE status and plans

Evgeny Kryshen
(Petersburg Nuclear Physics Institute)
for the ALICE collaboration

LHC on the March, Protvino, 20-22 November 2012

Contents

- ALICE motivation, layout and data taking overview
- Recent ALICE results
 - Identified particle spectra
 - Anisotropic flow
 - Particle correlations
 - Heavy flavours
 - Quarkonia
 - pA highlights
- Plans and upgrade perspectives
- Conclusions

Physics motivation

- Goal: study nuclear matter at extreme conditions of temperature and density
- Heavy ion collisions studied since SPS & RHIC eras
- Produced QCD matter initially thought as weakly interacting gas of quarks and gluons but ...
- found as strongly interacting matter:
 - short mean free path
 - high collectivity and flows
 - large parton energy-loss
 - almost perfect liquid

ALICE experimental setup

PID, vertexing and tracking capabilities

- particle identification (practically all known techniques)
- extremely low-mass tracker \sim 10% of X_0
- excellent vertexing capability
- efficient low-momentum tracking down to $\sim 100 \text{ MeV/}c$

ALICE Data taking history

system	$\sqrt{s_{NN}}$ (TeV)	run year	min. bias (centrality)	rare triggers, ∫Ldt
р-р	7	2010	800M	17 μb ⁻¹ **
р-р	7	2011	800M	2 pb ⁻¹
р-р	2.76	2011	70M	20 nb ⁻¹
р-р	8	2012	500M *	5 pb ⁻¹ *
Pb-Pb	2.76	2010	30M	4 μb ⁻¹ **
Pb-Pb	2.76	2011	9M (65M)	80 μb ⁻¹
p-Pb	5.02	2012	1.8M	0.9 μb ⁻¹

^{*} statistics for p-p 2012 is "planned"

- 2009-10: commissioning & the first data
- 2011: long p-p run with p-p at 7 TeV
 - 1 month of Pb-Pb run, already above nominal luminosity
- 2012: long p-p run at 8 TeV
 - 1 day p-Pb pilot run
- 2013 (plan): p-Pb, Pb-p measurements (above 30 nb⁻¹ expected)

^{**} no rare trigger used, value corresponds to min. bias

Identified particle spectra

Motivation

$$R_{AA}(p_T) = \frac{(1/N_{\rm evt}^{AA}) d^2 N_{\rm ch}^{AA}/d\eta dp_T}{\langle N_{\rm coll} \rangle (1/N_{\rm evt}^{pp}) d^2 N_{\rm ch}^{pp}/d\eta dp_T}$$
yield in pp

Interesting results on charged particle spectra in Pb-Pb collisions without Particle Identification (PID). Example: R_{AA} as function of p_{T}

Next step is to study 3 regimes of p_T and their particle species dependence:

Low: $p_{T} < 3-4 \text{ GeV}/c$

Bulk properties and collective radial flow

Intermediate: $3 < p_T < 7 \text{ GeV/}c$

- Test of valence quark scaling
- Anomalous baryon enhancement and coalescence

High: $p_T > 7 \text{ GeV/}c$

 Search for medium modification of fragmentation functions

Low p_T particle production

- Predicted temperature T = 164 MeV
- Thermal fit: $T = 152 \text{ MeV } (\chi^2/\text{ndf} = 40/9)$
- Ξ and Ω significantly higher than statistical model
- p/ π and Λ / π ratios at LHC lower than at RHIC Hadronic re-interactions? F.Becattini et al. 1201.6349, J.Steinheimer et al. 1203.5302

Baryon-to-meson ratio: p/π

- p/ π ratio at $p_T \approx 3$ GeV/c in 0–5% central Pb-Pb collisions factor ~3 higher than in pp
- the maximum of the ratio is shifted to higher p_T with respect to RHIC measurements
- at p_{T} above ~ 10 GeV/c back to the "normal" pp value
- recombination radial flow?

Identified particles R_{AA}

- Strong suppression confirming previous measurements for non-identified particles
- For p_{T} below ~ 7 GeV/c:
 - $R_{AA}(\pi) < R_{AA}(h^{\pm})$
 - $-R_{AA}(K) \approx R_{AA}(h^{\pm})$
 - $-R_{AA}(p) > R_{AA}(h^{\pm})$
- At higher p_T : R_{AA} are compatible \rightarrow medium does not significantly affect the fragmentation.

Direct photon production

- Low- p_T direct photons probe the early temperature
- ALICE: $T = 304 \pm 51 \text{ MeV}$ (for 0–40% Pb–Pb at \sqrt{s} =2.76 TeV, p_T < 2.2 GeV/c)
- PHENIX: $T = 221 \pm 19 \pm 19$ MeV (for 0–20% Au–Au at \sqrt{s} =200 GeV, p_T < 2 GeV/c)
- $p_T > 4 \text{ GeV/}c$ agreement with N_{coll} -scaled NLO

arXiv:1210.5958 [nucl-ex]

ALI-PUB-181

AT.T-PIJB-174

Anisotropic flow

Anisotropic flow

Spatial asymmetry transforms into momentum space:

$$\frac{dN}{d(\varphi_i - \Psi_n)} \sim 1 + 2 \sum_{n=1}^{\infty} v_n \cos[n(\varphi_i - \Psi_n)]$$

Phys. Rev. Lett. 107, 032301 (2011)

- Anisotropic flow of identified particles is sensitive to the partonic degrees of freedom at the early times of a heavy-ion collision
- flow vs. transverse momentum allows to quantify:
 - rate of hydrodynamic radial expansion
 - properties of the deconfined phase
 - details of hadronization mechanism

Identified particle v₂

- Mass ordering observed at low p_T for π , p, K^{\pm} , K^0_s , Λ , ϕ and (not shown) Ξ , Ω
- ϕ -meson follows mass dependence at p_T < 3 GeV/c and "meson band" at higher p_T
- Overall qualitative agreement with viscous hydro calculations at low p_T
- Adding hadronic rescattering phase improves the agreement: Heinz et al., AIP Conf Proc 1441, 766 (2012)

Identified-particle v₂: NCQ scaling

• scaling off by 10-20% at high p_T (where mass is negligible)

v_2 and v_3 versus η

- v_3 sensitive to initial state fluctuations
- v_2 and v_3 measurements extended up to $\eta = 5$
- observed plateau in pseudorapidity ($|\eta| < 2$)
- very good agreement between ALICE and CMS for v_2 in $|\eta| < 2.4$
- consistent with longitudinal scaling in ηy_{beam} with PHOBOS data

Event Shape Engineering

New tool towards better understanding of elliptic flow

$$Q_{n,x} = \sum_{i=1}^{M} \cos n\varphi_i$$

$$Q_{n,y} = \sum_{i=1}^{M} \sin n\varphi_i$$

$$q_n = Q_n / \sqrt{M}$$

- At fixed centrality large flow fluctuations
- v_2 splits by factor of two for semi-central events (30–50%)

Event Shape Engineering: example

- Modification of the p_T spectrum: large $q_2 \rightarrow$ harder spectrum
- Hint of mass ordering?
- Are v₂ and radial flow correlated?

Correlations and femtoscopy

Baryon femtoscopy

21

- Observe m_T -scaling of homogeneity length for all particle species
 - → consistent with hydrodynamics
- Baryon—antibaryon correlation function has large contribution from final state interaction
 → measurement of annihilation cross section

PID in jet structures

- Near-side peak (after bulk subtraction): p/π ratio compatible with that of pp (PYTHIA) \rightarrow No significant modification of jet fragmentation chemistry
- Bulk region: p/π ratio strongly enhanced compatible with overall baryon enhancement \rightarrow Baryon enhancement is from the bulk, not from jets

Heavy flavour highlights

(see dedicated talk by R.Bailhache)

D meson R_{AA}

JHEP 1209 (2012) 112

Average D-meson R_{AA} :

- $-p_T$ < 8 GeV/c hint of slightly less suppression than for light hadrons
- $-p_T > 8 \text{ GeV/}c$ both (all) very similar: no indication of colour charge dependence

- D^0 , D^+ and $D^{*+}R_{AA}$ compatible within uncertainties.
- Suppression up to a factor 5 at p_T ~ 10 GeV/c.

D meson v_2

Non-zero D-meson elliptic flow observed:

- consistent among D-meson species (D⁰, D⁺, D^{*+})
- comparable to v_2 of light hadrons

Simultaneous description of R_{AA} and v_2 – strong constraint to transport models

→ c-quark transport coefficient in medium

Heavy flavour $e(\mu) R_{AA} \& v_2$

- HF electrons:
 - strong suppression up to p_T 18 GeV/c in 0–10% centrality
 - non-zero v_2 in 20–40% centrality class
- **HF muons:** suppression in forward region very similar to that of electrons
- Simultaneous measurement of R_{AA} and $v_2 \rightarrow$ constrains transport models

Quarkonia

Quarkonia: suppression or enhancement?

- SPS & RHIC energies: Quarkonia suppression via colour screening
 → probe of deconfinement (Matsui and Satz, PLB 178, 416 (1986))
- LHC energies: Enhancement via (re)generation of quarkonia, due to the large heavy-quark multiplicity (A. Andronic et al., PLB 571, 36 (2003))

J/ψ R_{AA} vs centrality

- Centrality dependence of the nuclear modification factor studied at both central and forward rapidities
- At forward y, R_{AA} flattens for $N_{part} \ge 100$
- At LHC less suppression than at RHIC, weaker centrality dependence
- at low p_T (< 2 GeV/c) less suppression than at high p_T , especially in more central collisions
- Indication of J/ ψ regeneration at low p_{T} ?

Phys. Rev. Lett. 109, 072301 (2012)

The contribution of J/ψ from recombination should lead to a significant elliptic flow signal at LHC energy

- STAR: v_2 compatible with zero everywhere
- ALICE: hint for non-zero v₂
- Significance up to 3.5σ
- Qualitative agreement with transport models including regeneration

ψ' and J/ψ

- Study the $\psi(2S)$ yield normalized to the J/ ψ one in Pb-Pb and in pp: $[\psi(2S)/J/\psi]_{Pb-Pb}$ / $[\psi(2S)/J/\psi]_{pp}$
- Use $\sqrt{s} = 7$ TeV pp data as a reference (small \sqrt{s} and y-dependence accounted for in the systematic uncertainty)
- Large statistics and systematic errors prevent a firm conclusion on the $\psi(2S)$ enhancement or suppression versus centrality
- Exclude large enhancement in central collisions
 - Large enhancement observed by CMS at p_T above 3GeV/c not confirmed

CMS-PAS-HIN-12-007 R. Arnaldi (ALICE) QM2012

J/ψ in ultraperipheral collisions

- Ultra-peripheral (UPC) heavy-ion collisions: impact parameter b larger than sum of the two radii 2R
 → hadronic interactions strongly suppressed
- high photon flux $\sim Z^2$ \rightarrow high σ for γ -induced reactions
- LO pQCD: coherent J/ ψ cross section proportional to the squared nuclear gluon density:
 - → unique tool to probe nuclear gluon shadowing at low x
- Data in good agreement with pQCD models which include gluon shadowing
- See dedicated talk by C. Mayer

pA highlights

$dN_{ch}/d\eta$ in p-Pb collisions

- pA crucial to discriminate between initial (cold nuclear matter) effects and QGP dynamics
- p-Pb at LHC \rightarrow probe nuclear wave-function at low $x \rightarrow$ nuclear gluon shadowing
- gluon saturation models: steeper η_{lab} dependence than the data
- HIJING (with shadowing) and DPMJET: describe the η-shape rather well
- mid-rapidity (Npart) normalized $\langle dN_{ch}/d\eta \rangle$ p-Pb similar trend to pp

Charged particle R_{pA}

- consistent with unity for $p_T > 2 \text{ GeV/c}$
- the strong suppression observed in Pb-Pb is NOT an initial-state but hot QCD matter effect

arXiv:1210.4520 [nucl-ex]

Plans and upgrade perspectives

LHC and ALICE schedule

LHC Phase 0

2010-11: long run with p-p collisions at 7 TeV, 1 month/year Pb-Pb

• 2012: long run with p-p at 8 TeV **we are here**

• 2013: 1 month p-Pb control measurement

LHC LS1 (long shutdown 1)

2013-14: LHC consolidation and training
 ALICE detector completion and upgrades

LHC Phase 1

• 2015-17: p-p and Pb-Pb at full energy (+ probably Ar+Ar, p-Pb) start ALICE upgrade during last p-p run before LS2 (optional)

LHC LS2

2018: LHC luminosity upgrades
 ALICE detector upgrades

LHC Phase 2

2019-22: p-p and Pb-Pb at full energy at High-Luminosity LHC

ALICE LS1 upgrade

- complete PHOS (PWO)
- complete TRD
- consolidate jet capability by introducing EMCal (DCAL) at opposite position to the current EMCal

ALICE LS2 upgrade strategy

Goal: multi-dimensional, low p_T obsevables with unprecedented stat. and syst. accuracy:

- Record 100 times more statistics: (10 nb⁻¹), O(10¹⁰) central collisions
 - LHC rate after upgrade up to 50 kHz Pb-Pb (i.e. L \sim 6x10²⁷ cm⁻¹s⁻¹ ... factor 10 more)
 - present ALICE: < 500Hz at 50% trigger dead time
 - → in realistic trigger setup, only 10% of min.bias can be recorded
 - need to record all minimum bias (pipeline, continuous readout) ... no trigger!
 - requires high-rate upgrade for the detectors (including MWPC \rightarrow GEMs in TPC)
 - requires new DAQ and HLT systems
- Improve vertexing and tracking at low p_T :
 - new, smaller radius beam pipe
 - new inner tracker (ITS)

Plan:

- run 6 years with upgraded detector, i.e. until 2026
- including low B-field run & p-A control run

Also extending physics scope is under discussion:

- VHMPID: new high momentum PID capabilities
- MFT: b-tagging for J/ψ , low-mass di-muons
- FoCAL: low-x physics with identified γ/π^0

Bulk production

Intermediate p,

High-p, − jets

Heavy flavour

Charmonia

Dileptons – γ

Heavy nuclei

light flavours, v₂, HBT

heavy-flavour in jets

PID fragmentation

D-mesons, R_{AA}

charm baryons

 J/ψ forward, $R_{\Delta\Delta}$

J/ψ central, Y family

hyper(anti)nuclei, H-dibaryon

D-meson v₂

beauty, D_s

 $J/\psi v_2$

 Ψ' , χ_c

virtual γ

ρ-meson

v₂, correlations, baryon-meson

 R_{AA} , correlations, jet fragm.

ALICE physics	perspectives
---------------	--------------

Status as of

today

quantitative

quantitative

quantitative

hint

quantitative

hint

hint

quantitative

hint

hint

hint

hint

Reachable for

approved

precision

precision

precision

hint

quantitative

quantitative

hint

precision

quantitative

quantitative

quantitative

ALICE physics perspective	es
---------------------------	----

OL T

Reach with the

upgrade

precision

precision

precision

quantitative

precision

precision

precision

precision

Quantitative

Precision

precision

quantitative

precision

quantitative

quantitative

precision

Example: Heavy-flavour v₂

High rate, new ITS

$D^{\circ} \rightarrow K\pi$ Pb-Pb, 30-50% 0.35 1.7× 10¹⁰ events 0.3 prompt from B 0.25 0.2 0.15 0.1 - ₫ 0.05 p, (GeV/c)

No high rate, new ITS

- need >> 1 nb⁻¹ for precise measurement of charm and beauty v_2
- systematic uncertainties and corrections mostly cancel in v₂
- Other key measurements: Λ_b , Ξ_c , B decays, virtual γ , ψ' , χ_c , tagged jets...

Conclusions

- ALICE is obtaining a wealth of physics results from the first two LHC heavy-ion runs:
 - bulk, soft probes: spectra and flow of identified particles, thermal photons
 - high- p_T probes: jet fragmentation, particle-type dependent correlations
 - heavy-flavour physics: suppression and flow of D mesons, leptons, J/ψ
 - Low-x physics with exclusive J/ψ measurements
- Entering the precision measurement era:
 - First studies of cold nuclear matter effects with p—Pb collisions, more next year
 - Pb-Pb collisions at higher energy with complete approved ALICE detector
- Long-term upgrade strategy for high-luminosity LHC:
 - ambitious physics programme
 - require improved vertexing and tracking
 - and high-rate capability for all subdetectors