B-physics in ATLAS

V.Nikolaenko, IHEP on behalf of ATLAS collaboration

Outline

- B-physics triggers
- Quarkonium production and spectroscopy
- Measurement of the b-hadron production cross section
- Measurement of Λ_{b} lifetime and mass
- Limit on BR($B_s \rightarrow \mu^+ \mu^-$)
- CP-violating parameters in B_s decays

Invariant mass of oppositely charged muon candidate pairs for different triggers at the beginning of 2011 data

EF_2mu4_ denotes two muon triggers at level 1, confirmed m_{μμ} [GeV]
at the high level trigger, with both objects passing a threshold of 4 GeV
EF_mu20 denotes a single muon trigger at level , passing a threshold of 20GeV
Jpsimumu, Bmumu, Upsimumu and DiMu denote coarse invariant mass windows, as calculated using the trigger objects

The EF_2mu4_DiMu trigger was prescaled for some of the later data taking periods 3

Trigger and selection requirements

- Dimuon triggers are the main working tool of the B-Physics group. Many processes of interest have di-lepton final state, or di-lepton plus additional soft object photon or track(s). At relatively small transverse momenta, dimuons provide significantly better mass resolution and a clean trigger in comparison with electrons.
- CP-violation and rare decay studies are based on low-p_t dimuon triggers. Some studies are based on a single muon triggers.
- In 2011 run the EF_2mu4 J/ ψ and Upsilon triggers had no prescale.
- With the rise of instantaneous luminosity in 2012, the trigger requirements become significantly tighter. The L1_2mu4 trigger has been prescaled by a factor >10 at L=5.0 x 10³³ and the muon stream data were collected with L1_mu4mu6 or L1_2mu6 triggers.
- B-physics analyses based mainly on combined muons (reconstructed in Inner detector plus muon spectrometer), with muon transverse momentum greater than 4 GeV and with small impact parameters with respect to the primary vertex. Some analyses use specific triggers with one or two muons in the Barrel, there is a better reconstruction precision and less BG in comparison with Endcaps. Some analyses accept also muons tagged in calorimeters with tracks reconstructed in Inner detector only.
- The photon in χ_b study is reconstructed either through conversion to $e^+ e^-$ or by direct calorimetric measurement, with the "loose" photon selection and a minimum photon transverse energy of 2.5 GeV. Data sample used for this study has been acquired at Vs=7 TeV and corresponding to an integrated luminosity of 4.4 fb⁻¹. Final result is obtained with converted photons, with requirements on $p_t > 0.5$ GeV for both tracks, a small angle between track, a confirmation of e-hypothesis in TRT and a distance between reconstructed vertex and the beam > 4 cm.

Differential cross-sections of inclusive, prompt and non-prompt J/ψ at Vs=7 TeV using L=2.3 pb⁻¹

Y(1s) production cross section

Results are based on an integrated luminosity of 1.13 pb⁻¹ Both muons have $p_t^{\mu} > 4$ GeV and absolute pseudorapidity $|\eta_{\mu}| < 2.5$

Upsilon production

ATLAS preliminary Measurements of $\Upsilon(1,2,3S)$ a test of production mechanisms and complementary to J/ψ measurements:

- No contributions from B-decays
- Heavier quark mass provides better perturbative convergence
- More excited states Y(1,2,3S) and $\chi_{h}(nP)$ add complication
- Larger background contributions, Upsilon states merge together

Current analysis uses 1.8 fb⁻¹ of 2011 data

~ $10^7 \Upsilon(nS)$ candidates (background subtracted)

Measure inclusive/fiducial production cross-sections as function of Υp_T in central and forward rapidities, and as p_{T} -integrated rapidity spectra for each of the Upsilon states

Also measure production ratios between states vs p_{T} and rapidity

in $p_T(\mu)>4$ GeV, $|\eta(\mu)|<2.3$ Most precise, most differential, widest p_T range measurement (uncertainties ~6% on average) Measurement of $\Upsilon(nS)$ to $\Upsilon(1S)$ production ratios vs. p_T and rapidity NLO pQCD simply predicts these ratios to be 35% and 29% for the $\Upsilon(2S)$ and $\Upsilon(3S)$

Y(1,2S) differential cross sections Preliminary

 $d^2\sigma/dp_t dy \times BR(Yn \rightarrow \mu\mu)$ for Y(1S) left, Y(2s) right; at 0<|y|<1.2 (top) and 1.2<|y|<2.4 (bottom)

 \mathbf{p}_{t} range up to 70 GeV

Alignment variations in blue; NNLO Color Singlet inclusive in red; Color Evaporation Model in lilac lines

This result is much more complete than Tevatron or current CMS results.

$\chi_b \rightarrow$ (Upsilon(nS)+ γ and χ_b (3P) discovery

End of last year ATLAS discovered new quark-antiquark bound state, the $\chi_{bJ}(3P)$. Now has a new entry in the PDG 2012...

State	m (MeV)	Γ (MeV)	J^{PC}	Process (mode)	Experiment $(\#\sigma)$ Year	Status
$\chi_{bJ}(3P)$	10530 ± 10	?	?	$pp \to (\gamma \mu^+ \mu^-)$	ATLAS [35] (>6) 2011	NC!

Discovery now confirmed by LHCb and DØ: ATLAS mass: $10.530 \pm 0.005_{stat} \pm 0.008_{syst}$ GeV LHCb mass: $10.535 \pm 0.010_{stat} \pm 0.??_{syst}$ GeV DØ mass: $10.551 \pm 0.014_{stat} \pm 0.017_{syst}$ GeV ∑ 9 5 10.6 ATLAS Υ(4S) B threshold nvariant mass χ_{ь.}(3Ρ Potential mode Mass barycentre 10.4 r(3S) Filled: conversions 10.2 $\chi_{\rm b,l}(2P)$ World averages Mass barycentre Υ(2S) 10 χ_{ь.}(1P) World Mass barycentre 9.8 averages 9.6 r(1S) 9.4 (0,1,2)⁺⁺ 9.2

Observed bottomonium radiative decays in ATLAS, $L = 4.4 \text{ fb}^1$

ATLAS result remains most precise! Production x-sec and properties measurements ongoing!

b-hadron production cross section using decays to $D^{*+}\mu^{-}X$ in **pp collisions at Vs=7 TeV**

 Δm for $D^{*+}\mu$ combinations of opposite sign and same sign (dashed) m($D^{*+}\mu$) for combinations of opposite sign and within ±3σ of the Δm peak Differential cross section for H_b production as a function of p_t in the fiducial kinematical region $p_t(H_b) > 9$ Gev; $|\eta(H_b)| < 2.5$

Used dataset corresponding to integrated luminosity L=3.3 pb⁻¹, collected during the 2010 LHC run

Measurement of Λ_b lifetime and mass

 Λ_{b} lifetime and mass measured in $\Lambda_{b} \rightarrow J/\psi \Lambda(p\pi)$ channel:

Discrepancies observed between CDF and DØ results (1.8 σ difference) in Λ_b lifetime

 Λ_0 vertex efficiency decreases with distance from center of detector – careful study needed to avoid selection biases;

Trigger inefficiency depending on the impact parameter of a single muon was studied in details and included in syst. error

Measurement of $\Lambda_{b}\$ lifetime and mass

 $\Lambda_{\rm b}$ lifetime measurement:

 \tilde{ATLAS} measures $1.499 \pm 0.036 \pm 0.017$ ps (= ± 0.040 ps), better than the existing best measurements

$\Lambda_{\rm b}$ mass measurement:

ATLAS measures $5619.7 \pm 0.7 \pm 1.1$ compares well with recent LHCb $5919.19 \pm 0.7 \pm 0.3$ it is the second best measurement and reduces the PDG error in the average from 0.7 to 0.6 MeV.

Limit on BR($B_s \rightarrow \mu^+ \mu^-$)

- A limit on the branching fraction BR(B_s →μ⁺ μ⁻) is set using 2.4 fb⁻¹ of integrated luminosity collected in 2011. The process B⁺⁻→J/ψK⁺⁻, with J/ψ→μ⁺ μ⁻, is used as a reference channel for the normalization of integrated luminosity, acceptance and efficiency. The final selection is based on a multivariate analysis performed on three categories of events determined according to their mass resolution (the largest pseudorapidity value of two muons |η_{max} |<1.0, 1.0<|η_{max}|<1.5, 1.5<|η_{max} }<2.5), yielding a limit of BR(B_s→μ⁺μ⁻) < 2.2(1.9) x 10⁻⁸ at 95% (90%) Conf. Level.
- Next step is to double statistics with full 2011 data, but hope to gain more than a ~sqrt(2) improvement on sensitivity due to improvements in the analysis.
- Comment: in the 2012 data number of events per inverse femtobarn dropping due to trigger conditions, therefore the expected improvement is less than sqrt(lumi).

Limit on BR($B_s \rightarrow \mu^+ \mu^-$)

Invariant mass distribution of candidates in data. For each mass-resolution category (top to bottom) each plot shows the invariant mass distribution for the selected candidates in data (dots),

the signal (continuous line) as predicted by MC assuming BR($B_s^0 \rightarrow \mu^+ \mu^-$) = 3.5 x 10–8,

and two dashed vertical lines corresponding to the optimized Delta_m cut.

The grey areas correspond to the sidebands used in the analysis

Limit on BR($B_s \rightarrow \mu^+ \mu^-$)

- Observed CLs (circles) as a function of BR(B_s ->μ⁺μ⁻). The 95% CL limit is indicated by the horizontal (red) line. The dark (green) and light (yellow) bands correspond to ±1sigma and ±2sigma fluctuations on the expectation (dashed line), based on the number of observed events in the signal and sideband regions
- Note: LHCb just has submitted a paper based on 2011 + a half of 2012 statistics and got a BR value well consistent with SM prediction and with precision close to 3σ.

Physics of J/ψφ decay

- There is "LHC Gold" B-cannel, new physics can increase SM predicted CPviolation
- This decay proceeds in S, P and D-waves, leading to CP-even final state in S and D-waves and to CP-odd state in P-wave decay.
- CP violation arises from interference of $B_s \rightarrow J/\psi \varphi$ decay and B_s –anti B_s mixing (see next slide) and is proportional to a phase difference, φ_s , of the two complex weak amplitudes
- SM predicted value is small $\phi_s = 0.0363 \pm 0.0017$ rad, currently not accessible by any experiment, however it is within LHC potential
- Many New physics models predict extra contributions to ϕ_s . Searches started at Tevatron, continue at LHC.
- ϕ_s is extracted from $B_s \rightarrow J/\psi \phi$ data by time-dependent angular analysis with 7 unknown parameters

B_s mixing

- Bs mixing is described at the lowest order by box diagrams involving 2 Ws and 2 up-type quarks.
- This leads to two mass eigenstates (Light and Heavy) which have different lifetimes.

- In the neutral Bs system, the two mass eigenstates have similar lifetimes and must be studied together.
- This is different from the neutral Kaon system, where the two mass eigenstates have very different lifetimes (~ factor 600). The eigenstates are thus referred to by their lifetime and can be effectively studied independently.

Method of CP-measurement in $B_s \rightarrow J/\psi \varphi$

- Final state J/ $\psi \phi$ is a mixture of CP-even (~75%) and CP-odd (~25%) states
- Three angular momentum states of $J/\psi \varphi$
- L=0 S-wave CP-even
- L=1 P-wave CP-odd
- L=2 D-wave CP-even
- ϕ_s can only be measured if CP-states separated using angular distributions of final state particles (used two polar decay angles in J/ ψ and ϕ rest frames and an azimuth angle between two decay planes)
- 4 additional parameters (strong helicity amplitudes) should be determined simultaneously with the weak parameters
- 7 parameters in total:
- Weak: ϕ_s , $\Delta \Gamma = (\Gamma_H \Gamma_L)$, $\Gamma = (\Gamma_H + \Gamma_L)/2$;
- Strong: two phases and two absolute values (4 independent parameters of three helicity amplitudes). Without tagging and for small ϕ_s , one of the strong phase (ϕ_{perp} in the transversity notation) cannot be well measured, so the value measured by LHCb used for this quantity. The other phases are measured by ATLAS.

CP violation in $B_s \rightarrow J/\psi \phi(1020)$ decays

Performed a measurement of CP violation in $B_s \rightarrow J/\psi \phi$ using *untagged* time-angular analysis of 4.9 fb⁻¹ data collected in 2011

Untagged analysis: decay time distribution and angular correlation between muons and kaons in final state provide information on $CP=\pm 1$ amplitudes and their interference.

Large sample of events: 23 k reconstructed B_s from 2011 data sample.

Parameters of CP violation in $B_s \rightarrow J/\psi \phi$ decay

Several parameters describing the B_s system are measured: the mean B_s lifetime (1/ Γ_s), decay width difference $\Delta\Gamma_s$, transversity amplitudes $|A_0(0)|$, $|A_{||}(0)|$ and weak phase φ_s .

The results are consistent with the world average values and with theoretical expectations, in particular $\varphi_s = 0.22 \pm 0.41 \pm 0.10$ rad is within 1 σ of the expected value in SM. $\Delta\Gamma_s = 0.053 \pm 0.021_{stat} \pm 0.010_{syst} \text{ ps}^{-1}$ Precision of $\Delta\Gamma_s$ and Γ_s are competitive with LHCb. $\Gamma_s = 0.677 \pm 0.007_{stat} \pm 0.004_{syst} \text{ ps}^{-1}$ Next steps: tagged analysis; add 2012 data

Conclusions

- B-physics at LHC is rich, and ATLAS experiment has produced competitive results in several fields, including spectroscopy, lifetime measurements and untagged analysis of CP-violation in B_s decays. Work on the B-tagging methods in ATLAS is ongoing.
- Many other analyses which were not mentioned in this talk are in progress, for example the ψ(2s) production, associated production of W-boson plus J/ψ, X(3772) study, B⁺⁻ cross section measurement, B_c study.

References

- Measurement of the differential cross-sections of inclusive, prompt and non-prompt J/ψ production in pp collisions at $\sqrt{s} = 7$ TeV, NP B850 (2011) 387;
- Y(1S) Fiducial Production Cross-Section in pp collisions at Vs = 7 TeV in ATLAS, PL B705 (2011) 9;
- Observation of a new χ_b state in radiative transitions to Y(1S) and Y(2S) at ATLAS, G.Aad et al., Phys.Rev.Lett. 108 (2012) 152001;
- Search for the decay $B_s^0 \rightarrow \mu^+ \mu^-$ with the ATLAS detector , G.Aad et al., PL B713, (2012) 387;
- Measurement of the *b*-hadron production cross section using decays to $D^{*+}\mu^- X$ final states in *pp*-collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector, G.Aad et al., Nucl. Phys. B 864 (2012) 341;
- Measurement of the Λ_b lifetime and mass in the ATLAS experiment, G.Aad et al., arXiv:1207.2284 [hep-ex], submitted to Phys. Rev. D;
- ϕ_s and $\Delta\Gamma_s$ from time dependent angular analysis of the decay Bs_s \rightarrow J/ $\psi \phi$ by ATLAS, G.Aad et al., arXiv:1208.0572 [hep-ex], submitted to J.High Energy Phys.;
- Search for the rare decays B->μμ at the LHC with the ATLAS, CMS and LHCb experiments, ATLAS-CONF-2012-061;
- Measurement of Upsilon production in 7 TeV pp collisions at ATLAS, CERN-PH-EP-2012-295 ;
- Combined LHC limit to the decay $B_s^0 \rightarrow \mu\mu$ (ATLAS-CMS-LHCb note) ATLAS-CONF-2012-061

 $\chi_b\!\rightarrow$