Review of recent results on jet physics in Heavy Ion from LHC

Alexandre SHABETAI

Physics motivation

Jets are produced very early and are sensitive to early stage of the collision

- → This allows to probe and study the QGP by using jet properties
 - Study jet production (ex. Cross section measurements): test pQCD
 - Study in medium energy loss
 - Path length dependence
 - Broadening of shower
 - Leading hadron vs. softening of FF
 - Probe the density of the medium

This can be studied by using various observables, in this talk we will mainly discuss: nuclear modification factors, azimuthal correlations, di-jet asymmetry and jet FF.

Hadron Nuclear Modification Factor

$$R_{AA} = \frac{Yield(AA)}{Yield(pp)}$$

$$R_{AA}(,p_T) = \frac{1}{N_{\infty II}} \times \frac{dN_{AA}/dp}{dN_{pp}/dp}$$

In absence of nuclear modifications, hard processes are expected to follow N_{col} scaling $\Rightarrow_{RAA} = 1$

Hot vs. Cold Nuclear Matter Effects

LHC: Strong suppression in PbPb (hadron $R_{AA} \sim 0.2$) ALICE: First p-Pb results (Measured on the small data sample from the September pilot run) High-p_T charged particles follow binary scaling. Initial state effects are small.

RHIC: $R_{dAu} > 1$ at high $p_T => Cronin effect$

R_{AA} RHIC vs LHC

- PHENIX run 7 : more statistics : RHIC R_{AA} now increases with p_T (as seen @ LHC)
- Extrapolation from RHIC gives too much suppression at LHC (if Eloss. calc. are calibrated at RHIC this can over predict results at LHC→ Eloss is not a simple function of color charge at fixed coupling ...)
- →Broad agreement between models but no quantitative understanding of medium density yet... 5

Di-hadron Azimuthal Correlations

 No direct access to the jet energy (~20% of the jet energy)

STAR Phys. Rev. Lett. 91 (2003) 072304

CMS:Very high-p_T di-hadron correlations in PbPb

→ p_{T trig} > 30 GeV/c : strong signal even at low pT_{assoc} (1-3 GeV/c)

Effect of flow is important (modification of away side structure)

CMS PAS HIN-12-010

Very high-p_T di-hadron correlations in PbPb (2)

Away-side: large enhancement below ~3 GeV/c and deficit at higher p_T.

Near-side: enhancement below 3 GeV/c

All v_n harmonics subtracted! (n≥2)

$$I_{AA}^{near} = \frac{Y_{PbPb}^{near}}{Y_{pp}^{near}}$$

$$I_{AA}^{away} = \frac{Y_{PbPb}^{away}}{Y_{pp}^{away}}$$

Full jets: p-p cross-section

STAR & PHENIX p-p Jets

Gaussian Filter used (seedless cone-like algorithm)

→ p-p measurement benchmark well with NLO

Full Jets in p-p 2.76 TeV

anti $k_{\rm T}$: R = 0.4

- → Good agreement with NLO pQCD (+ hadronization) and Pythia8
- → Increase of $\sigma(R=0.2)/\sigma$ (R=0.4): Higher pT jets are more collimated
- → Important reference for Pb-Pb analysis

Full Jets: Nuclear modification factor

ALICE (Charged-Jet) R_{cp}

R_{cp} relative to 50-80% centrality

Charged track jets

Anti-KT with fastjet bkg subtraction Leading track p_T cuts (p_T>5 and p_T>10 GeV/c) to suppress fake jets (combinatorial)

Atlas R_{cp}

Anti-kT with iterative background subtraction

Flat at ~0.5

ATLAS: → Moderate but significant R dependence (~ 0.4-0.6 for 0.2 < R < 0.6) stronger suppression for smaller jets

ATLAS: → Moderate but significant R dependence of the significant R depen

Suppression vs. radius RHIC vs LHC

→ Stronger dependence seen @ RHIC ?

CMS R_{AA}

CMS: → Almost no dependence on jet pT jet R_{AA} and hadron R_{AA} agree

→ No strong dependence on jet radius

ALICE: Full jet R_{AA}

Charged + Neutral (full) jets

Anti-KT with fastjet bkg subtraction Leading track p_T cuts (pT>5 GeV/c) to suppress fake jets (combinatorial)

Jet R_{AA} : At low jet p_T suppression decreases with pT

At high p_T jet R_{AA} rising ~ hadron R_{AA} ~ 0.3-0.4

Comparison: Jet R_{cp} & R_{AA} @ LHC vs. RHIC

→ Jet R_{cp} consistent within systematic uncertainties Different measurements (tracks,PF, calo jets)

Flat (ATLAS, CMS) vs rising $R_{cp} \& R_{AA}$ (ALICE)

Important shape difference (effect of leading hadron biased jets?)

Large uncertainty

→ Large difference between jet and pion R_{AA} (unlike LHC)

Hadron-jet Azimuthal Correlations

Surface bias effect: the parton producing the jet is biased towards higher in-medium path length Trigger Hadron: close to the surface

ALICE: Hadron-jet correlations

Clear correlation with trigger pT Dominated by high Q2 events

$$\begin{array}{c} \Delta_{\text{recoil}}\left(\left.p_{\text{T,Jet}}^{\text{ch}}\right) = \\ \frac{1}{N_{\text{trig}}} \frac{\operatorname{d}N\left(\left.p_{\text{T,Jet}}^{\text{ch}}\right; p_{\text{T}}^{\text{min}}, p_{\text{T}}^{\text{max}}\right)}{\operatorname{d}p_{\text{T,Jet}}^{\text{ch}}} \\ \frac{1}{N_{\text{trig,ref}}} \frac{\operatorname{d}N\left(\left.p_{\text{T,Jet}}^{\text{ch}}\right; p_{\text{T,ref}}^{\text{min}}, p_{\text{T,ref}}^{\text{max}}\right)}{\operatorname{d}p_{\text{T,Jet}}^{\text{ch}}} \end{array}$$

How to remove uncorrelated component? Study difference between recoil spectrum (signal) and a reference (15-20 GeV)

Ratio of recoil Jet Yield

p-p ref PYTHIA (Perugia 2010) R=0.4 pT track > 0.15 GeV/c

→ Jet
$$I_{AA} = 0.70.8$$

No visible broadening R=0.2..R=0.4

Hadron $I_{AA} = 0.5-0.6$

→ Jet I_{AA} > Hadron I_{AA} (momentum scale different)

Hadron I_{AA}:

- Near side : ~ 20% yield enhancement (fragmentation after energy loss)
- Away side : suppression by a factor of 2

Fragmentation Functions

CMS: Track p_T distributions in jet cones (R=0.3)

In (central) Pb-Pb: **excess** of tracks compared to pp at low p_T (high ξ) High p_T (low ξ): **no change** compared to jets in p-p collisions

CMS PAS HIN-12-013

CMS: Jet fragmentation functions

20 times more data in 2011: decreased uncertainties down to much lower track p_T (starting from 1 GeV/c) reveals an excess at high ξ compared to p-p

$$z = pT_{,track}/pT_{,jet}$$

CMS PAS HIN-12-013

FF ATLAS

 $p_{T}^{10^2}$ [GeV]

25

10

No

modification at

high-z (or p₋)

Enhancement

at low-z (or

low- p_{τ})

Suppression

intermediate-z

→ Modification as function of centrality

Effect going away by decreasing centrality

ATLAS-CONF-2012-115

FF CMS vs ATLAS

Only one set of systematic uncertainties shown

Good agreement between ATLAS and CMS

Depletion from 3-4 GeV to 40-50 GeV (2-3% of the total jet energy)

Enhancement below 3-4 GeV (~ 2% of the jet energy)

CMS: jet shapes vs. centrality

$$\rho(r) = \frac{1}{f_{\rm ch}} \frac{1}{\delta r} \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(r - \delta r/2, r + \delta r/2)}{p_{\rm T}^{\rm jet}} \qquad \qquad f_{\rm ch} = \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(0, R)}{p_{\rm T}^{\rm jet}}$$

$$\int_{10}^{10} \frac{1}{p_{\rm th}^{\rm th}} \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(0, R)}{p_{\rm T}^{\rm jet}} = \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(0, R)}{p_{\rm T}^{\rm jet}} = \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(0, R)}{p_{\rm T}^{\rm jet}} = \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(0, R)}{p_{\rm T}^{\rm jet}} = \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(0, R)}{p_{\rm T}^{\rm jet}} = \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(0, R)}{p_{\rm T}^{\rm jet}} = \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(0, R)}{p_{\rm T}^{\rm jet}} = \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(0, R)}{p_{\rm T}^{\rm jet}} = \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(0, R)}{p_{\rm T}^{\rm jet}} = \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(0, R)}{p_{\rm T}^{\rm jet}} = \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(0, R)}{p_{\rm T}^{\rm jet}} = \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(0, R)}{p_{\rm T}^{\rm jet}} = \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(0, R)}{p_{\rm T}^{\rm jet}} = \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(0, R)}{p_{\rm T}^{\rm jet}} = \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(0, R)}{p_{\rm T}^{\rm jet}} = \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(0, R)}{p_{\rm T}^{\rm jet}} = \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(0, R)}{p_{\rm T}^{\rm jet}} = \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(0, R)}{p_{\rm T}^{\rm jet}} = \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(0, R)}{p_{\rm T}^{\rm jet}} = \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(0, R)}{p_{\rm T}^{\rm jet}} = \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(0, R)}{p_{\rm T}^{\rm jet}} = \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(0, R)}{p_{\rm T}^{\rm jet}} = \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(0, R)}{p_{\rm T}^{\rm jet}} = \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(0, R)}{p_{\rm T}^{\rm jet}} = \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(0, R)}{p_{\rm T}^{\rm jet}} = \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(0, R)}{p_{\rm T}^{\rm jet}} = \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(0, R)}{p_{\rm T}^{\rm jet}} = \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(0, R)}{p_{\rm T}^{\rm jet}} = \frac{1}{N_{\rm jet}} \sum_{\rm jets} \frac{p_{\rm T}(0, R)}{p_{\rm T}^{\rm jet}$$

Again, depletion/enhancement pattern (correlation between fragment p_T and r)

Compared to p-p:

same p_T -flow close to the jet axis more p_T -flow at large radii and a bit less in between.

CMS PAS HIN-12-013

Di-jets Asymmetry

Di-jets Asymmetry ATLAS & CMS

ATLAS: For central events a strong imbalance of leading vs subleading momentum develops Azimuthal back to back correlation remains

ubatech

How does the di-jet imbalance depend on the leading jet energy?

CMS: Di-jets in reference (p-p, PYTHIA) more balanced with increasing p_T <pT,2/pT,1> in Pb-Pb consistent with a constant offset from reference MC (increasing with centrality but does not depend on p_T)

ubatech

What else?

Missing energy recovered at large angle

Leading jet: more high pt tracks, sub-leading more low $p_T \rightarrow look$ outside of the cone

<u>CMS</u>: The momentum difference in the di-jet is balanced by low p_T particles mainly at large angles relative to the away side jet axis

STAR: Energy lost at high p_T approximately recovered at low p_T and high R

v₂ vs Jet v₂ (ATLAS & STAR)

Jet Definition: HT trigger $E_T > 5.5 \text{ GeV}$ constituent $p_T^{\text{cut}} = 2 \text{ GeV}/c$

- Jet v₂{TPC EP}
- Jet v₂{FTPC EP}
- HT trigger v_2 {TPC EP}
- HT trigger ν₂{FTPC EP}

ATLAS: Jet v₂ wrt. event plane from forward calorimeters

Jets v_2 = Correlation between event plane and reco. jets STAR: non 0 jet v_2 in mid central collisions Path length of parton energy loss?

ATLAS & STAR results compared to hadron v₂ up to 50 GeV/c from CMS

CMS:B jets (p-p & Pb-Pb)

Secondary vertex tagged using flight distance significance

b-jet fraction: similar in p-p and Pb-Pb (does not show a strong centrality dependence) \rightarrow b-jet quenching is comparable to light-jet quenching ($R_{AA} \approx 0.5$), within present systematics

Gamma jets

(relative to PYTHIA reference, calibrated in 7 GeV p-p)

No angular decorrelation observed (now with much lower jet p_T)

Summary

Theory / Experiments comparisons were only briefly discussed in this talk.

→ Are we realy comparing the same observables?

A lot of new results on jets from both LHC and RHIC

The next p-A run at LHC should soon provide some additional measurements

→In general good consistency between experiments

