HIE ISOLDE Physics: a personal view PJ Woods (University of Edinburgh) ## **REX** post-accelerator - Originally constructed by several CERN member states ~ 15 MCHF - Utilises now → 50% ISOLDE running time - REX has accelerated 43+ different RIBs - Present RIB yields from ISOLDE allow 10% of all 700 radioisotopes to be used ### World ISOL | FACILITY | DRIVER | POWER | USER BEAMS
ACCELERATED | ENERGY | PHYSICS
REACH | |---|---|-------|--|------------------------------|---| | LOUVAINE-
LA-NEUVE
(BELGIUM)
1989-2008 | 30 MeV
protons | 6 kW | ⁶ He, ⁷ Be, ^{10,11} C, ¹³ N, ¹⁵ O, ¹⁸ F, ^{18,19} Ne, ³⁵ Ar | 10 MeV/u
cyclotron | Astrophysics,
Nuclear structure | | HRIBF
Oak Ridge
(USA)
1997 | 100 MeV
p, d, α
(-ve ion
source) | 1 kW | ⁷ Be, ^{17,18} F, ⁶⁹ As, ^{67,83} Ga, ⁷⁵⁻⁷⁹ Cu, ⁸⁰⁻⁸⁷ Ge, ⁸⁴ Se, ⁹² Sr, ^{118,120,122,124} Ag, ¹²⁹ Sb, ¹³⁰⁻¹³⁴ Sn, ^{132,134,136} Te | 2 - 10
MeV/u
tandem | Nuclear Structure,
Astrophysics | | ISAC
TRIUMF
(CANADA)
2000 | 500 MeV
protons | 50 kW | ^{8,9,11} Li, ¹¹ C, ^{20,21} Na, ¹⁸ Ne, ²⁶ Al, ³⁴ Ar | 4.5 MeV/u
linac | Astrophysics,
Condensed matter,
Nuclear Structure | | SPIRAL
GANIL
(FRANCE)
2001 | 100
MeV/u
heavy
ions | 6 kW | ^{6,8} He, ^{15,19-21} O, ¹⁸ F, ^{17-19,23-26} Ne, ^{33-35, 44,46} Ar, ⁷⁴⁻⁷⁷ Kr | 2 - 25
MeV/u
cyclotron | Nuclear structure,
Astrophysics | | REX ISOLDE
(CERN)
2001 | 1.4 GeV protons | 3 kW | 8,9Li, 10-12Be,17F,
24-29Na, 28-32Mg, 68Ni,
67-73Cu, 74,76,78,80Zn,
70Se, 88,92Kr, 108In,
106,108,110Sn,122,124,126Cd
138,140,142,144Xe, 148Pm,
153Sm, 156Eu | 0.3 - 3
MeV/u
linac | Nuclear structure,
Condensed matter,
Astrophysics | REX-ISOLDE 2006 Transfer studies of light nuclei e.g. ¹⁰Li MINIBALL (Coulex, transfer) #### **HIE-ISOLDE at CERN** Increase in REX energy from 3 to 10 MeV/u (first step in increase to 5.5 MeV/u) Increase proton intensity 2 \rightarrow 6 μ A (LINAC4, PSB upgrade) - target and front-end upgrade RFQ cooler, REX-TRAP, REX-EBIS REX-ECR upgrades Super-HRS for isobaric separation RILIS upgrade & LIST ## Coulomb barrier for RIB ## HIE ISOLDE will be a unique new world class facility for studies of exotic nuclei combining: • A unique wide range of high quality beams of exotic nuclei RIBs above the Coulomb barrier for heavy nuclei A world class suite of experimental equipment, with room for further development #### HIE beam energies will: - enter ideal energy regime for transfer reaction studies, see talk of R Raabe - increase Coulex yields and allow higher excitations - allow near-barrier fusion, elastic scattering, and break-up reaction studies eg of halo nuclei. - improved sensitivity in tilted-foil polarization measurements (M Hass) - allow studies of key resonances of interest for nuclear physics and nuclear astrophysics #### Time reverse (α,p) studies for X-ray bursters ## First pioneering study of $^{17}F(p,p')^{17}F$ reaction for $^{14}O(\alpha,p)^{17}F$ reaction → successfully used Miniball + CD set-up to identify decay of key low energy 1⁻ resonance in ¹⁸Ne →with higher energies, method could be applied to key resonances in other reactions eg 18 Ne(α ,p) 21 Na →one of two key reactions vital for breakout from the hot CNO cycles into the rp process #### Direct (p,γ) measurements with RIBs ...are usually not possible....and specialist separation device like DRAGON not planned for HIE ISOLDE - \rightarrow Key unknown for resonances fed in (p,γ) reactions is often the proton spectroscopic factor, S_p eg $^{30}P(p,\gamma)^{31}S$ - Edinburgh/RIKEN study of d(³⁰P,³¹P)p reaction to study analog states in mirror nuclei ³¹P/³¹S In-flight CRIB beams ~3 MeV/u with emittance limiting resolution of individual states in ³¹P \rightarrow direct alternative to determine S_p is to measure (d,n) reaction - could use Miniball to identify γ -rays from resonances using coincidences with recoil separator! NB since resonances are above particle threshold, unlikely to be fed by other higher lying γ -decays. Need separation device combining good A and Z resolution eg Argonne FMA → This could also be a very powerful general technique for nuclei near the proton drip-line, where level densities remain low in the region of the proton threshold energy → ⁵⁶Ni is a critical waiting point nucleus in X-ray/rp process scenarios #### High energy resonant reactions on HIE ISOLDE →could feed excited 2p decaying states for decay mechanism studies, a technique pioneered at LLN and then ORNL for excited states in ¹⁴O and ¹⁸Ne, respectively →excite exotic states eg possible cluster structures $$^{4}\text{He} + ^{6}\text{He} \rightarrow ^{10}\text{Be*}$$ M Freer et al. LLN using LEDA silicon strip detector array Advanced Si array could be used for near barrrier reaction studies eg elastic scattering of halo nuclei ## Tilted-foil polarization, β-NMR setup at the HV platform at ISOLDE Rf resonance curve for ¹⁷Ne $\mu = 0.74(4)$ #### Present possibility – move experiment to REX #### **REX@ HIE ISOLDE ADVANTAGES: Higher energy, higher yields:** - Velocity "no" multiple scattering in foils. - Variety of charge states, configurations. - Ease of operation!! - More "exotic" nuclei accessible #### **FUTURE:** For example: fp shell, **Z=N+1 nuclei** - 55Ni -- 55Co, 59Zn -- ## Summary • HIE ISOLDE will be a world class facility HIE ISOLDE will produce major advances in the interlinked fields of exotic nuclei and explosive nuclear astrophysics • It can form the foundation for the ultimate future European ISOL facility, EURISOL ### 68,70Cu Coulex I Stefanescu et al, PRL 98 (2007) 122701