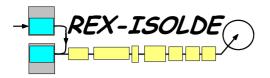


REX now also heavyweight champion


D. Voulot and F. Wenander for the REX team

ISOLDE Workshop Dec 2007

Outline

- 1. Operation experiences 2007
- 2. Low energy results and hardware status
- 3. Linac performance and hardware modifications
- 4. Planned developments

Highlights and Hick-ups 2007

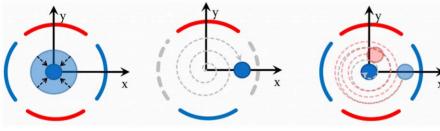
© 7/7 successful runs (accelerated beam delivered to the experiment) IS451, IS411, IS424, IS409, IS410, IS452, IS454 + test run for BaF and SrF

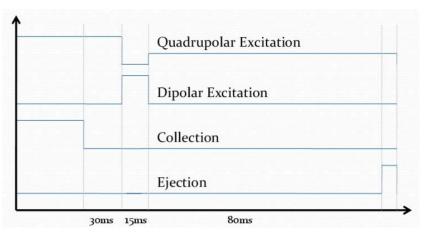
- © 3 new elements and 7 new radioactive isotopes post-accelerated ⁹⁶Sr²⁷⁺ ^{140,142,148}Ba^{33+,33+,35+} ^{184,186,188}Hq^{43+,43+,44+}
- Record heavy beams accelerated (more later)
- Beam quality not always up to expectation (more later)
- ⊗ Lower efficiencies last year

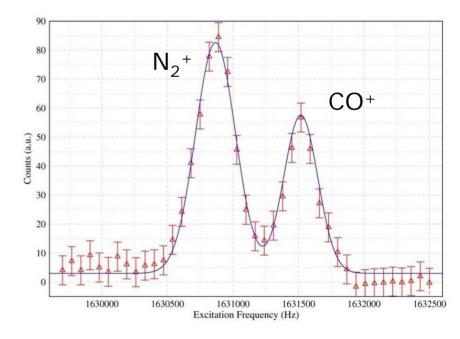
	Ζ	Ν	Α	q	half life	C stripper	stripped q	Ε		breeding	eff.	PSB cy	/cle	ррр	Estimated
						ug/cm2		MeV	/u	ms	%				REX yield /s
F	9	8	17	5	64.8s	50	ç	9 2.6	60	18	7.5	6	12	3.0E+13	7.8E+03
Sr	38	58	96	23	1s			2.8	37	120	2.0				2.0E+04
Ва	56	84	140	33	12.75d			2.8	34	171	4.5				9.9E+06
Ва	56	86	142	33	10.7m			2.8	34	168	5.0				7.6E+05
Ва	56	92	148	35	610 ms			2.8	34	230	1.5				N/A
Hg	80	104	184	43	30.6s			2.8	35	170	1.7	6	12	8.0E+12	4.0E+03
Hg	80	106	186	43	1.4m			2.8	35	170	1.7	5	14	8.0E+12	4.0E+05
Hg	80	108	188	44	3.25m			2.8	35	170	1.7	5	18	8.0E+12	9.4E+05
Mg	12	19	31	9	230ms			2.9	99	28.5	10.0	8	19	3.0E+13	4.0E+04
Mg	12	18	30	7	335ms			2.2	27	15	10.0	8	19	3.0E+13	N/A
Mg	12	18	30	7	335ms			1.9	91	15	10.0	8	19	3.0E+13	N/A
Mg	12	18	30	7	335ms			1.5	56	15	10.0	18	36	3.0E+13	N/A
Mg	12	18	30	7	335ms			2.8	35	15	7.2	14	28	1.5E+13	1.0E+04

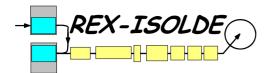
Beam comments

- ¹⁷F finally a success!
- no molecular (AIF) beam, instead atomic
 ¹⁷F and 50 ug/cm² carbon stripper foil ->
 ¹⁷F⁵⁺ to ¹⁷F⁹⁺ while ¹⁷O eliminated
- ⁹⁶Sr(F) continuous injection mode into EBIS
- malfunctioning REXTRAP (internal discharges)

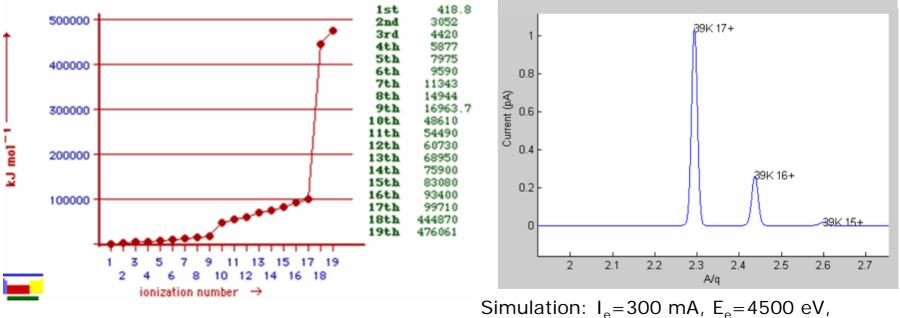

 > no bunching or cooling in REXTRAP future operation mode with the RFO cooler?
 ^{10³}
 ^{10¹}
 ^{10¹}
 - failed partly due to ³⁵Cl conteminetion for a target (in spite of cold transfer line) ~ Mass (~Energy) (in spite of cold transfer line) cleaning process in REM/TRAP not sufficiently tested


Isotopic mass separation in REXTRAP


Operation cycle for mass selection mode


- cool down the ion cloud (normal operation) then close the trap and stop collection
- shift out the ion cloud with a dipolar excitation
- selectively re-centre the desired species

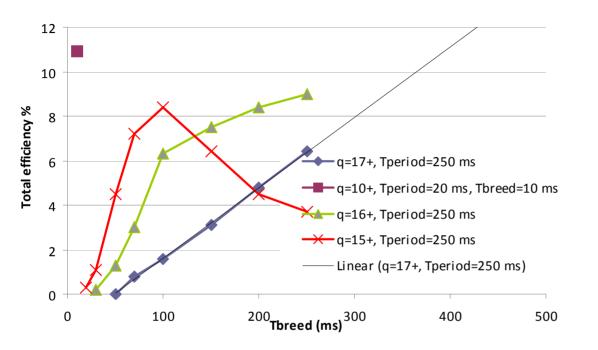
- * Attainable mass resolving power 3E4
- * Necessary excitation time ~100 ms (compare with lifetime)
- * Efficiency / Intensity limitations <10% few pA or 10^{5} - 10^{6} ions/bunch
- Need evaluation during realistic runs –
 1 extra shift setup time with protons


Closed shell breeding

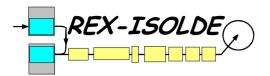
The idea

- * use atomic shell gaps to reach 100% efficient charge breeding
- * adjust EBIS electron beam energy < ionisation potential
- * breed long and force ions into one charge state

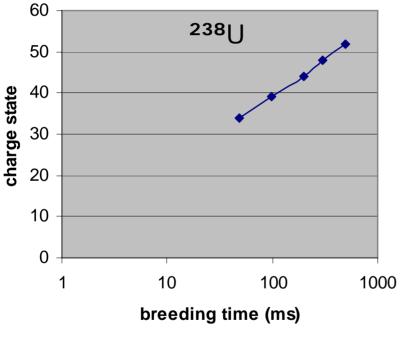
Limitations


- * only elements with shell gap around 2 5 keV
- * competing processes (radiative recombination, evaporative ion losses)

 T_{breed} =250 ms, j_e=130 Å/cm², K⁺ ions injected


Closed shell breeding cont'd

Tested with: ${}^{39}K^{17+}$ Shell structure: 2.8.8.1 I_e =300 mA E_e =4500 eV


Results

- * Longer breeding time (i.e. lower j_e(effective)) than expected radiative recombination? evaporative ion losses?
- * Charge breeding efficiency lower than normal breeding (for reasonable breeding times)
- * Not an alternative for REX (except possibly for light ions)

Heavy beams

- * REX breeder system initially designed for A<50
- * Last year proven that A~200 can be reached in some cases

- * T_{breeding} for ²³⁸U⁵²⁺ is 498 ms add to this 500 ms cooling in the trap
- * T_{breeding} can possibly be reduced to 400 ms
- * REXTRAP+REXEBIS efficiency 4.3%

REX low energy stage now covers A=7 to 238

This year

- * $^{238}U^{56+}$, A/q=4.25, T_{breed}=500 ms
- * accelerated through the Linac (without 9-gap)
- * very low efficiency since not optimised

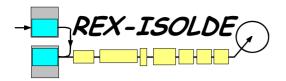
Accelerated radioactive ^{184,186,188}Hg to 2.8 MeV/u helped by the fact that we were running neutron deficient nuclei

What is limiting?

* Hardware limits

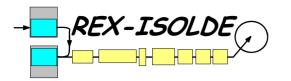
Linac requires A/Q<4.5 weak electron beam inside the EBIS

* Inherent problems with


long breeding times (lumped extraction -> use slow extraction) low efficiency for heavy elements

- poor ion confinement inside the EBIS
- distribution over several charge states
- critical beam setup

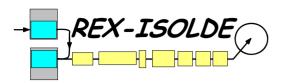
Heavy beams cont'd


Low energy problems

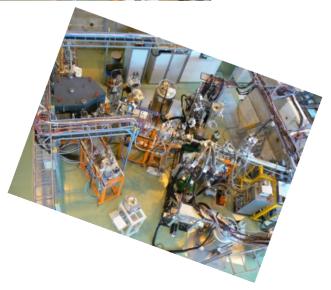
- * Discharges inside the REXTRAP due to deposits on insulators partly repaired, to be rebuilt this shutdown
- * REXTRAP control system stopped Windows patch update suspected
- * Difficult start-up of the EBIS an ice-plug in the cryostat poorly performing cathode thereafter running smoothly
- * And of course the usual / unusual:

Beam diagnostics problems; Running in problems with new control system; Mechanical problems with tuners; Broken pumps; Large N-peaks in EBIS spectrum; Anti-resonance in trap cyclotron freq scan etc etc

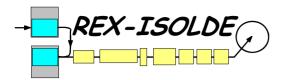
REX-ISOLDE Too much power in the 9-gap!

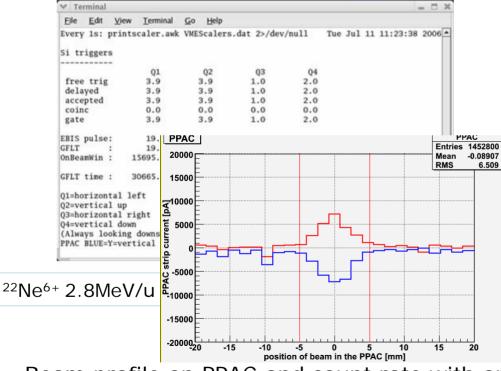

- * The 200 MHz amplifier can now provide full power 106 kW, 100 Hz, 1 ms on dummy load
- * Several runs have used the 9-gap at high power in 2007

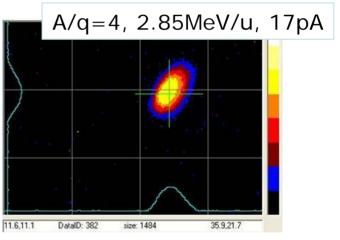
³¹Mg⁹⁺ 3.0 MeV/u 84 kW / 33 Hz 30Mg7+2.9 MeV/u88 kW / 50 Hz96Sr23+2.9 MeV/u89 kW / 8 Hz


* New practical limit 9-gap cavity cooling -> max 4.5 kW average

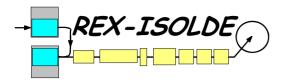
Thanks to AB/RF and Berdermann




Mini-move installation finished


- Easier beam tuning at Miniball (more knobs, better steering)
- Increased distance and extra shielding for the X-ray background
- Realignment of the beamlines (including, 9-gap, bender, collimators...)
- Installation of reference points in the new hall for alignment
- One new beam diagnostics box installed and operational

Improved beamspot?


- * Shorter set-up times and easier optimisation of the beamspot at MB
- * No quantitative measurement yet (emittance measurement needed)

Beam profile after the linac at max energy for a stable Ne beam

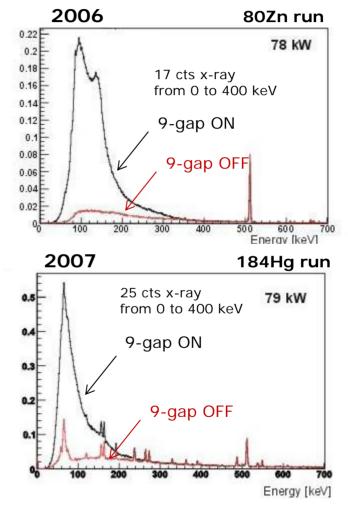
Beam profile on PPAC and count rate with an empty target frame for a stable beam (several pA)

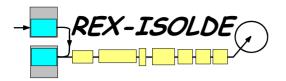
X-ray background at Miniball

☺ The background is still present in MB's spectra

better shielding and longer distance higher amplifier power

© The x-ray background is strongly reduced above 100 keV


© The source of background is identified: mainly due to X-rays on axis and Compton scattering in the bender/beamline

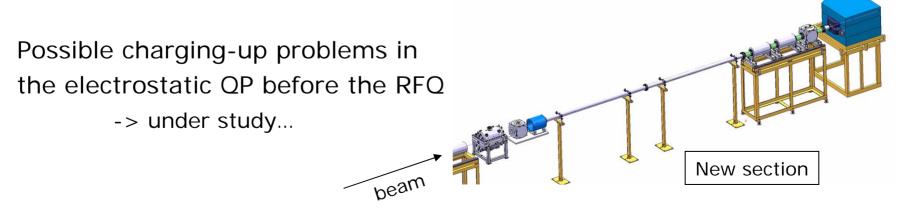

Foreseen

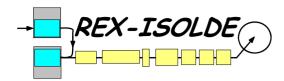
- new shielding for the 9-gap and IHS

- lead collimators and mobile screens on the beamline after the 9-gap

Thanks to Jarno and Emanuel

Linac problems


Discharges in the IHS and buncher cavities


- -> problematic for the higher A/q (max 60 kW in the IHS)
- -> will be addressed during shutdown

Transport in the new beamline is too sensitive

(need steering, does not scale very well)

- -> could be improved by modifying the optics (move one of the quadrupoles)
- -> install proper magnetic steerers
- -> realign the rest of the linac (before 9-gap cavity)

Development schedule - low energy

Entry ions are

decelerated to 100 eV

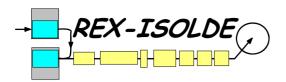
60kV

-60kV-100V #He inlet

- 1. Beam preparation with RFQ cooler
- Continuous injection into EBIS
 - (high intensity beams)
- © equalize beam energies from plasma sources
 - (see also separate project by P. Suominen) $\frac{E_{injection} = 60 \, keV \pm 5eV}{e_{juistat} = 20\pi \, mm \cdot mrad}$
- ☺ difficult to replace reliable REXTRAP
- Beam development C, N and O beams molecular/atomic beams from MINIMONO ECRIS two tests failed 2007 uncertain outcome (large stable beam contaminations from the ECR)
- 3. Try CeB₆ cathode in EBIS higher electron beam current? longer life-time?

4. On-line mass resolving tests with REXTRAP

Release


Pulsed end plate

 $= 60 \, keV \pm 1eV$

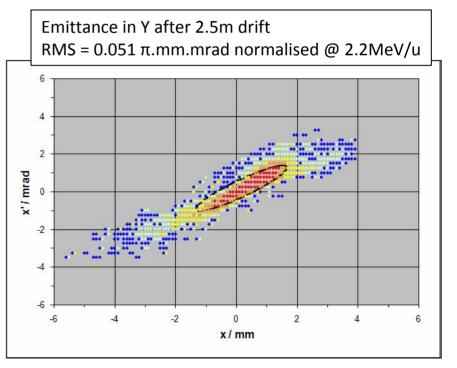
 $\varepsilon_{\text{final}} = 3\pi \ mm \ mrad$

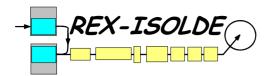
with extraction

Eeiection

Development schedule - Linac

- 1. Preparation for HIE REX
 - * transverse emittance at 1.2, 2,2 and 3 MeV/u

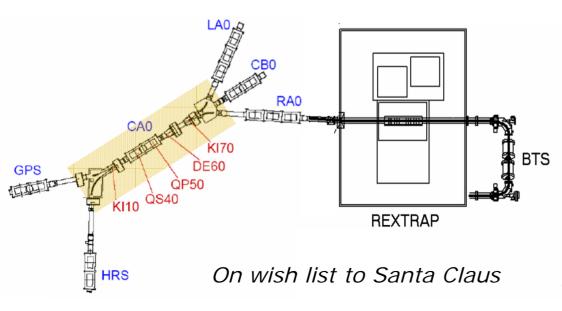

(follow up last year's measurements)

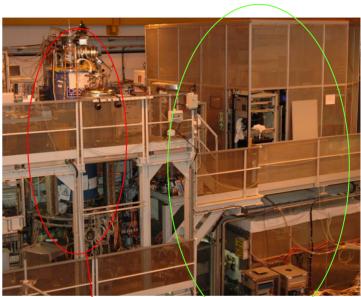

* bunch length measurements

(recuperated a Bunch Length and Velocity Detector)

* ΔE , energy gain vs power etc

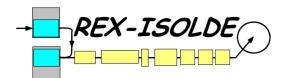
- 2. Accelerated polarised beams
 - * use tilted foil
 - * beam physics requests?
 - * need external / your assistance


Time – a scarce resource


Setup time is a bottleneck * extended REX setup time foreseen * no night-time setups any longer

1. Parallel beams through CAO line

Technical feasibility study


T. Giles, sec 7.2 in 'HIE-ISOLDE: the technical options', CERN 2006

2. WITCH B-field

Possible to run REX with WITCH B-field on in noncritical situations (not during physics runs or beam set-up)

Some Practical News

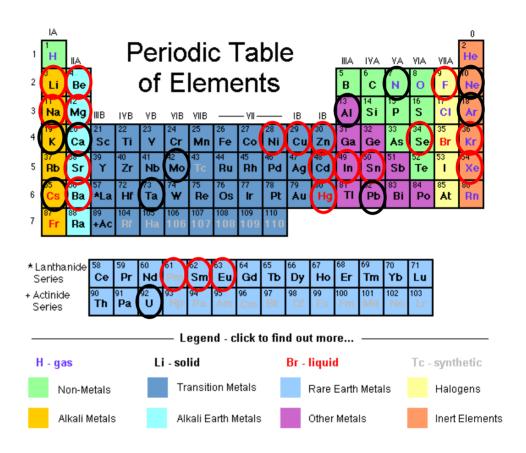
For the users:

for machine details from each run, summary found at: <u>www.cern.ch/ISOLDE</u>, click on <u>REX-ISOLDE</u>, bottom first page

report from weekly ISOLDE Technical meeting: <u>www.cern.ch/ISOLDE</u>, click on <u>Committees & Meetings</u>

Operational changes:

- 1. Transition of operation started 2007, will continue 2008 liberate Didier (fellow) for HIE REX activities
- 2. Two weeks REX course for ISOLDE operators autumn 2007
- 3. Matteo Pasini (AB/RF) joins as Linac specialist
- 4. Longer scheduled setup-time foreseen for 2008
- 5. Specialist supervision scheme or not?



Students for mass resolving tests, in-trap decay and polarised beams most welcome!

8,9,11**T.i** 10,11,12Be 17F 24,25,26,27,28,29Na 28,29,30,31,32Mg ⁶⁸Ni 67,68,69,70,71,73**C11** 74,76,78,807n ⁷⁰Se 88,92Kr ⁹⁶Sr 122,124,126Cd 108 Tn 106,108,110Sn 138,140,142,144Xe 140,142,148Ba 148 Pm ¹⁵³Sm ¹⁵⁶Eu 184,186,188Hg

The REX smörgåsbord...

53 radioactive isotopes of 20 elements

A selection of charge bred stable elements