Y-ray nucleosynthesis : results from the INTErnational Gamma Ray Astrophysics Laboratory

N. Mowlavi INTEGRAL Science Data Center Observatoire de Genève

CERN, 17 December 2007

Elements synthesized in stars

• Abundance analysis \rightarrow knowledge of the processes occurring in stars.

Advantage of radioactive nuclei

- Witnesses of recent nucleosynthesis
- γ-rays not absorbed by interstellar matter (attenuation length ~few g cm⁻²)

Requirements

- Nucleus must be abundant
- Must be rapidly ejected into interstellar medium

Observatoire de Genève

Stellar production sites

Binary systems

Red Giant filling its Roche lobe

White Dwarf accreting matter

Slow accretion on a massive WD → thermonuclear runaways

= **Nova** (~35/y in Galaxy, but only ~4 observed)

⁷Be, ²²Na, ²⁶Al

Astrophysical Y-ray lines

Decay chain	½ life time	Line energies keV (branching ratios)	Sites
$^{7}\text{Be} \rightarrow ^{7}\text{Li}$	53.3 d	477.6 (10.5%)	Novae
²² Na → ²² Ne	2.6 y	1274.5 (99.9%)	Novae
²⁶ AI → ²⁶ Mg	0.74 My	1129.7 (2.4%), 1808.6 (99.7%)	WR, SN, AGB, Novae
$^{44}\text{Ti} \rightarrow {}^{44}\text{Sc} \rightarrow {}^{44}\text{Ca}$	60 y 3.9 h	67.9 (94.4%), 78.3 (96.2%) 1157.0 (99.9%)	SN
⁵⁶ Ni → ⁵⁶ Co ⁵⁶ Co → ⁵⁶ Fe	6.1 d 77.3 d	158.4 (98.8%), 750.0 (49.5%), 811.9 (86.0%) 846.8 (99.9%), 1238.3 (66.1%), 2598.5 (17.0%)	SN
$^{57}Ni \rightarrow {}^{57}Co$ ${}^{57}Co \rightarrow {}^{57}Fe$	35.6 h 272.8 d	127.2 (16.7%), 1377.6 (81.7%), 1919.5 (12.3%) 14.4 (9.2%), 122.1 (85.6%), 136.5 (10.7%)	SN
⁵⁹ Fe → ⁵⁹ Co	44.5 d	192.4 (3.1%), 1099.3 (56.5%), 1291.6 (43.2%)	SN
60 Fe $\rightarrow {}^{60}$ Co 60 Co $\rightarrow {}^{60}$ Ni	I.5 My 5.3 y	58.6 1173.2 (100%), 1332.5 (100%)	SN
e ⁺ + e ⁻	0.1-10 My	511	
in red : e ⁺ emitter		in blue : detected lines	

INTEGRAL : the instruments

The Spectrometer SPI

- 19 Ge detectors
- 20 keV → 8 MeV with 0.23 % res. @ 1.33 MeV
- Field of View: 13.2° x 13.2° (fully) 30° x 30° (zero response) with 2.5° resolution

N. Mowlavi, 17 December 2007

Observatoire de Genève **INTEGRAL : the launch** INTEGRAL Science Data Center Perigee: ~9000 km Apogee: ~150000 km **Period :** ~72 h • Scientific data processed and checked at the ISDC/Geneva Observatory

• Successful mission : extended up to at least 2012

N. Mowlavi, 17 December 2007

CERN - Y-ray nucleosynthesis

ESA - S.COR

N. Mowlavi, 17 December 2007

Observatoire de Genève INTEGRAL Science Data Center

Galactic ²⁶Al diffuse emission

N. Mowlavi, 17 December 2007

N. Mowlavi, 17 December 2007

CERN - Y-ray nucleosynthesis

Observatoire de Genève INTEGRAL Science Data Center

- Exploded in 1667 at ~3.4 pc

⁴⁴Ti from Cas A

- 10-15 Mo ejected

- Progenitor: probably WR (SNIb)

e⁺+e⁻ annihilation

• 511 keV from Galactic disk

- Recent evidence
- All can be explained from ²⁶Al (surprise)

• 511 keV from Galactic center

Annihilation of 10⁴³ e⁺/sec in small region

Origin? - β⁺-decaying radioactive isotopes (SNIa -> 2 10⁴² e+/sec, but great uncertainties)
Decay of Π⁺ produced in cosmic ray interactions with interstellar nuclei (should be seen in disk too)

- High energy processes (pair creation by high-energy photons)

- Bosonic dark matter annihilation of low-mass particles (1-100 MeV) -> Check from dwarf galaxies which are dark-matter dominated?

Conservative interpretation: Galaxy's old stellar populations

- SNIa -> 2x1042 e+/sec (but great uncertainties)

