

Shape coexistence in n-rich Sr isotopes studied by low energy coulomb excitation

IS451

E. Clément CERN/IN²P³-GANIL

A Görgen CEA-Saclay

Shapes of exotic nuclei

Shapes of exotic nuclei

- Large area of competition between the oblate and prolate shapes which leads to unexpected symmetries and shape change
- Prolate, oblate or spherical states within small energy range : shape coexistence

Important constraints for modern nuclear structure theories :

Predicted values of β_2

 \checkmark E (0⁺₂), ρ^2 (E0), B(E2), Q₀ ...

n-rich Sr and Zr isotopes

All theoretical calculations predict a sudden onset of quadrupole deformation at the neutron number N=60

... but differ for deformation parameter and excitation energy

Both deformations should coexist at low energy

Shape coexistence between highly deformed and quasi-spherical shapes

The first evidence is the energy of the 2⁺₁ state

The highly deformed band $0_{3}^{+} \rightarrow 2_{3}^{+} \rightarrow 4_{2}^{+}$ becomes the ground state band in ⁹⁸Sr

The onset of deformation around N=58 is maybe more gradual

Experimental details

★ First Sr beam at REX-ISOLDE → needed a new development

* The chosen option was the molecular extraction as ⁹⁶Sr¹⁹F⁺

MINIBALL SET UP

Classical set up composed by :

- The 7 clusters of MINIBALL
- Stripped silicon detector for particles detection

(Doppler correction and differential cross section)

Coulomb excitation on ¹²⁰Sn and ¹⁰⁹Ag target :

Coulex normalisation possible through the Sn and Ag excitation

Cross section between 27 and 150 deg in center of mass (differential cross section)

MINIBALL SET UP (2007)

Beam composition

* In such experiment a crucial point for the B(E2) measurement is the beam composition

Since 2007, a Bragg detector (*T.U Munchen*) is placed at the end of the Miniball beam line and measures **CONSTANTLY** the beam composition in Z and A determination.

Beam composition in the IS451 run

A/Q=4.17

The weakness of beam is compensated by a pure radioactive beam :

-> No systematic error due to the beam composition in the normalization by the target excitation

Preliminary spectra Sn target Ag target DC for Sr DC for Sr 2⁺₁ -> 0⁺₁ ⁹⁶Sr ¹⁰⁹Ag 3/2 -> 1/2 5/2 -> 1/2 Stopped transitions ⁹⁶Sr 2⁺₁ -> 0⁺₁ ¹²⁰Sn 21 -> 01 ԿԱ Energy (keV) Energy (keV) DC for Sn DC for Ag 800 10 Energy (keV) Energy (keV)

Coulomb excitation of ⁹⁶Sr

Matrix element extraction

Ag and Sn target : differential cross section measurement

Conclusion (of the proposal)

Coulomb excitation at low energy offers an unique opportunity to understand the complex scenario of shape coexistence in Sr isotopes

- ▶ Improvement of the $B(E2,2^+_1 \rightarrow 0^+_1)$ value
- -> Measure of the B(E2) related to the O'2.3 and 2'2.3 states -
- Measure of the diagonal matrix element of the 2⁺₁ state

Measure of the diagonal matrix elements of the 2⁺, and 2⁺, states

Collaboration

E. Clément, J. Cederkäll, P. Delahaye, L. Fraile, F. Wenander, J. Van de Walle, D. Voulot,

PH Department, CERN, Geneva, Switzerland

<u>A. Görgen</u>, C. Dossat, W. Korten, J. Ljungvall, A. Obertelli, Ch. Theisen, M. Zielinska, DAPNIA/SPhN, CEA Saclay, France

- T. Czosnyka, J. Iwanicki, J. Kownacki, P. Napiorkowski, K. Wrzosek, HIL, Warsaw, Poland
- P. Van Duppen, T. Cocolios, M. Huyse, O. Ivanov, M. Sawicka, I.Stefanescu, IKS Leuven, Belgium
- S. Franchoo, IPN Orsay, France
- F. Dayras, G. Georgiev, CSNSM Orsay, France
- A. Ekström, Department of Physics, Lund University, Sweden

M. Guttormsen, A.C. Larsen, S. Siem, N.U.H. Syed, Department of Physics, University of Oslo, Norway

- P.A. Butler, A. Petts, Oliver Lodge Laboratory, University of Liverpool, UK,
- D.G. Jenkins, Department of Physics, University of York, UK,
- V. Bildstein, R. Gernhäuser, T. Kröll, R. Krücken, TU München, Germany
- P. Reiter, N. Warr, IKP Köln, Germany

Differential coulex cross section

Coulomb excitation analysis : GOSIA*

