Sub-Barrier Coulomb Excitation of ^{110,108,106}Sn

A. Ekström¹, J. Cederkäll ^{1, 2}, C. Fahlander¹ *et al.* for the IS418 collaboration REX-ISOLDE, CERN

¹Department of Physics Lund University ²PH Department CERN

ISOLDE Workshop CERN, 17-19 dec 2007

Outline

Introduction

- Purpose of Experiment
- Seniority and Shell-Model Calculations
- 2 Experiment
 - ISOLDE
 - Detectors

Analysis

- Data
- B(E2) Calculation

Results

- Present Situtation Towards N = Z = 50
- Target Normalization
- Outlook

Purpose of Experiment

Coulomb Excitation of 110,108,106 Sn

ISWS07I 3/38

Andreas Ekström (Lund University)

Coulomb Excitation of ^{110,108,106} Sn

ISWS07I 4/38

Andreas Ekström (Lund University)

Coulomb Excitation of ^{110,108,106} Sn

ISWS07I 4/38

Andreas Ekström (Lund University)

Coulomb Excitation of ^{110,108,106} Sn

ISWS07I 4/38

Experimental Data A=116-130

Exhibit expected parabolic behaviour

SM-Calculation I

Not including any excitations across the N = Z = 50 gap

A. Banu *et al.* PRC (2005)

Theoretical calculations based on computer codes developed by Morten Hjorth-Jensen

Experimental Data A=112,114

Deviation from parabolic trend

SM-Calculation II

Including proton excitations across the Z = 50 gap A. Banu et al. PRC (2005)

Theoretical calculations based on computer codes developed by Morten Hjorth-Jensen

Experimental Data A=116-130

Exhibit expected parabolic behaviour

SM-Calculation I

Not including any excitations across the N = Z = 50 gap

A. Banu et al. PRC (2005)

Experimental Data A=112,114

Deviation from parabolic trend

SM-Calculation II

Including proton excitations across the Z = 50 gap A. Banu et al. PRC (2005)

Coulomb Excitation of 110, 108, 106 Sn

Experimental Data A=116-130

Exhibit expected parabolic behaviour

SM-Calculation I

Not including any excitations across the N = Z = 50 gap

A. Banu et al. PRC (2005)

Theoretical calculations based on computer codes developed by Morten Hjorth-Jensen

Experimental Data A=112,114

Deviation from parabolic trend

SM-Calculation II

Including proton excitations across the Z = 50 gap A. Banu *et al.* PRC (2005)

Theoretical calculations based on computer codes developed by Morten Hjorth-Jensen

Experimental Data A=116-130

Exhibit expected parabolic behaviour

SM-Calculation I

Not including any excitations across the N = Z = 50 gap

A. Banu et al. PRC (2005)

Experimental Data A=112,114

Deviation from parabolic trend

SM-Calculation II

Including proton excitations across the Z = 50 gap A. Banu *et al.* PRC (2005)

ISOLDE Isotope Separator On-Line

■> ■ つへの ISWS07I 6/38

Andreas Ekström (Lund University)

Coulomb Excitation of ^{110,108,106} Sn

■▶ 重 ���? ISWS07I 7/38

イロン イロン イヨン イヨン

DSSSD Double Sided Silicon Strip Detector

Coulomb Excitation of ^{110,108,106} Sn

() < </p>

^{110,108,106}Sn Experiment with REX

Isotope	Energy [MeV/u]	Sn Fraction [%]	Target
¹¹⁰ Sn	2.82	90.0(14)	2.0 mg/cm ^{2 58} Ni
¹⁰⁸ Sn	2.82	59.0(27)	2.0 mg/cm ^{2 58} Ni
¹⁰⁶ Sn	2.83	29.2(42)	2.0 mg/cm ^{2 58} Ni

Andreas Ekström (Lund University)

Coulomb Excitation of ^{110,108,106} Sn

■ト ■ つへの ISWS07I 9/38

Particles Data From ¹¹⁰Sn Experiment

Andreas Ekström (Lund University)

Coulomb Excitation of ^{110,108,106} Sn

ISWS07I 10/38

$\gamma\text{-}\mathrm{rays}$ Data From $^{\mathrm{110}}\mathrm{Sn}$ Experiment

<き>● ● ● のへの ISWS07I 11/38

- Ejectile (Sn..) Recoil (Ni) selection through kinematical cut
- Prompt particle-γ cuts for each quadrant of the DSSSD
- Selecting only ejectiles and recoils scattered into DSSSD simultaneously (2p events)
- Reconstructing missing particle in 1p events
- γ -ray Addback in order to improve statistics (\sim 10 %) (^{106,108}Sn)
- Doppler correction

110 Sn γ -rays $^{_{110}}$ Sn J. Cederkall *e*t al. PRL **98**, 172501 (2007)

Area = 579 ± 24

Area = 237 ± 15

・ロト ・四ト ・ヨト ・ヨト

 $^{108}{
m Sn}~\gamma$ -rays $^{_{108}}{
m Sn}$ unpublished

Area = 994 ± 38

Area = 577 \pm 34

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

 $^{106}{
m Sn}~\gamma ext{-rays}$ $^{106}{
m Sn}$ unpublished

Area = 133 ± 15

Andreas Ekström (Lund University)

-2 ISWS07I 15/38

・ロト ・ 四ト ・ ヨト ・ ヨト

Gosia2 T. Czosnyka *e*t al. Am. Phys. Soc **28:745** (1983).

Input

- Level scheme and known matrix elements
- Kinematics and detector geometry
- Target thickness and dE/dx
- Angular integration limits
- Internal conversion coefficients, branching ratios...

Output

Minimization routine \Rightarrow

- B(Oλ) values!
- Angular distribution correction included
- Nuclear deorientation effect included ...

^{110,108,106} Experimental Input

	<i>A</i> = 110	<i>A</i> = 108	<i>A</i> = 106
$N_{\gamma}(^{58}Ni)$	237(15)	577(34)	206(16)
$N_{\gamma}(^{A}Sn)$	579(24)	994(38)	133(15)
Sn Fraction %	90.0(14)	59.0(27)	29.2(42)

- Q(2⁺) = 0 b in line with stable Sn isotopes (R. Graetzer *e*t al. PRC12, 1462 (1975).)
- Energy loss in target from SRIM

< < >>

RESULTS, $B(E2; 0^+_1 \rightarrow)2^+_1$

• B(E2;¹¹⁰Sn) = 0.220(22) e²b² PRL **98**, 172501 (2007)

18/38

- $B(E2;^{108}Sn) = 0.222(19) e^2 b^2$ (unpublished)
- $B(E2;^{106}Sn) = 0.195(39) e^2b^2$ (unpublished)

REX-ISOLDE *B*(*E*2)-values, ^{110,108,106}Sn Adopted values from A. Banu *e*t al. PRC **72**, 061305(R) (2005)

Andreas Ekström (Lund University)

Coulomb Excitation of ^{110,108,106} Sn

ISWS07I 19/38

REX-ISOLDE *B*(*E*2)-values, ^{110,108,106}Sn REX ¹¹⁰Sn J. Cederkall *et al.* PRL **98**, 172501 (2007)

Andreas Ekström (Lund University)

Coulomb Excitation of ^{110,108,106} Sn

ISWS07I 20/38

All Data (REX+ Other Published Results) GSI ¹⁰⁸Sn A. Banu *et al.* PRC **72**, 061305(R) (2005)

Andreas Ekström (Lund University)

Coulomb Excitation of ^{110,108,106} Sn

ISWS07I 21/38

All Data (REX+ Other Published Results) MSU ^{112,110,108,106}Sn C. Vaman *et al.* PRL **99**, 162501 (2007)

Andreas Ekström (Lund University)

Coulomb Excitation of ^{110,108,106} Sn

ISWS07I 22/38

All Data (REX+ Other Published Results) ZOOM

Andreas Ekström (Lund University)

Coulomb Excitation of ^{110,108,106} Sn

ISWS07I 23/38

< 17 ▶

All Data (REX+ Other Published Results) ZOOM

Andreas Ekström (Lund University)

Coulomb Excitation of 110,108,106 Sn

ISWS07I 24/38

< 17 ▶

- REX B(E2) values normalized against ⁵⁸Ni $B(E2; 0^+ \rightarrow 2^+) = 0.0705(18) e^2b^2$ (ENSDF Adopted Value)
- GSI and MSU data normalized against ¹¹²Sn and ¹⁹⁷Au, respectively

Extended shell-model calculations:

- Increase model space to include **proton**-neutron excitations across the N = Z = 50 gap.
- Investigate single particle energy drift.
- Spin-orbit partners...
- More experiments in this region needed:
 - Measure ¹⁰⁴Sn !
 - Even-mass neutron-deficient Cd-isotopes

Extended shell-model calculations:

- Increase model space to include **proton**-neutron excitations across the N = Z = 50 gap.
- Investigate single particle energy drift.
- Spin-orbit partners...
- More experiments in this region needed:
 - Measure ¹⁰⁴Sn !
 - Even-mass neutron-deficient Cd-isotopes

The End Thank You For Your Attention!

Coulomb Excitation of 110,108,106 Sn

< ≣ > ≣ • ⊃ ৭ ে ISWS07I 27 / 38

・ロト ・ 四ト ・ ヨト ・ ヨト

Appendix

◆□ > ◆□ > ◆臣 > ◆臣 > ○三 ○○○

Semi-Classical Coulomb (Projectile) Excitation Cross Section

$$d\sigma_{E\lambda} = \left(\frac{Z_t e}{\hbar v}\right)^2 a^{-2\lambda+2} B(E\lambda) df_{E\lambda}(\nu,\xi)$$
(1)

a - half distance of closest approach

$$a = \frac{Z_p Z_t e^2}{m_0 v}$$

 $B(\mathcal{O}\lambda; I_i \rightarrow I_f)$ Definition

$$B(\mathcal{O}\lambda; I_i \to I_f) = \frac{1}{2I_i + 1} |\langle I_i || \mathcal{O}\lambda || I_f \rangle|^2$$
(3)

Andreas Ekström (Lund University)

Coulomb Excitation of ^{110,108,106} Sn

ISWS07I 29/38

<<p>(日)、

(2)

Appendix II: Weisskopf Units (W.u.) For E2 Transitions

W.u. Defined for $2^+ \rightarrow 0^+$ as

$$1 W.u. = 5.94 \times 10^{-6} A^{4/3} e^2 b^2$$
(4)

REMEMBER spin factor in $B(O\lambda)$ definition

$$B(\mathcal{O}\lambda; l_i \to l_f) = \frac{2l_f + 1}{2l_i + 1} B(\mathcal{O}\lambda; l_f \to l_i)$$
(5)

The single particle unit (spu) is defined for $0^+ \rightarrow 2^+$ transition. So,

$$spu = 5 \cdot W.u.$$
 (6)

Hence, transtitions expressed in spu are 5 times smaller than when expressed in W.u. It's all about the direction....

Confused?! \Rightarrow USE e^2b^2

Appendix III: SM Calculation Details

SM-Calculation I

CD-Bonn, G-matrix renormalization, $e_{\nu}^{eff} = 1.0$ e. model space: $\nu(0g_{7/2}, 1d, 2s, 0h_{11/2})$ PRC 72, 061305(R) (2005)

SM-Calculation II

CD-Bonn, G-matrix renormalization, $e_{\nu}^{eff} = 0.5$ e, $e_{\pi}^{eff} = 1.5$ e model space: $\nu(0g_{7/2}, 1d_{5/2}, 1d, 2s, 0h_{11/2})$ and $\pi(g, d, s)$ up to 4p - 4h exctation. (seniority truncation $\nu = 8$) PRC 72, 061305(R) (2005)

ISWS07I 31/38

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Appendix IV: SM Calculation Details

Theoretical(CDbonn) vs Experimental energy levels

Coulomb Excitation of ^{110,108,106} Sn

ISWS07I 32/38

Appendix V: SM Calculation Details

Theoretical(n3lo) vs Experimental energy levels

Coulomb Excitation of ^{110,108,106} Sn

ISWS07I 33 / 38

Appendix VI: SM Calculation Details

0^+ gs Nucleon distr. Interaction: gmtx_CDbonn73_hw85_A100_MBPT5. Banu SPE

・ロト ・四ト ・ヨト ・ヨト

Appendix VII: Seniority I

Generalized Seniority

If, $[[H, S^+], S^+] = const(S^+)^2$ I. Talmi NPA 172 1-24 (1971) where *H* is the Hamiltonian. $\Rightarrow E(2^+)$ independent of particle number! \Rightarrow general *n*-particle configuration predictions \Rightarrow truncation schemes

Shell-Model [SM] vs. Generalized Seniority (two states) [GS] (N. Sandulescu PRC 55 (1997))

GS:
$$|J\rangle = D_J^+(S^+)^{n-1}|0\rangle$$
, where $S^+ = \sum_j C_j(a^+ja^+j)_{J=0}$, and $D^+(J) = \sum_{j_1j_2} X(j_1, j_2; J)(a_{j_1}^+a_{j_2}^+)_{J=0}$

E(2 ⁺)	¹⁰⁴ Sn	¹⁰⁶ Sn	¹⁰⁸ Sn	¹¹⁰ Sn	¹¹² Sn
SM	1.45	1.42	1.57	1.63	1.65
GS1	1.51	1.56	1.80	2.17	1.65
GS2	1.53	1.54	1.64	1.71	1.72
EXP	1.260	1.206	1.206	1.211	1.256

NOTE: SM in table is based on Bonn A interaction with different single particle energies!

Andreas Ekström (Lund University)

Coulomb Excitation of 110, 108, 106 Sn

ISWS07I 35/38

The seniority zero/two components of the Shell-Model wavefunction is given by

$$(\nu = 0) |\langle SM(n, J = 0)|(S^+)^{(n)}|0\rangle|^2, (\nu = 2) |\langle SM(n, J)|D_J^+(S^+)^{(n)}|0\rangle|^2$$

	¹⁰⁴ Sn		¹⁰⁶ Sn		¹⁰⁸ Sn		¹¹⁰ Sn		¹¹² Sn	
J^{π}	GS1	GS2								
0+	0.950	0.966	0.876	0.938	0.796	0.924	0.742	0.905	0.767	0.909
2 ⁺	0.931	0.927	0.787	0.815	0.663	0.780	0.438	0.790	0.420	0.776
4 ⁺	0.906	0.906	0.798	0.821	0.482	0.743	0.236	0.764	0.173	0.680
61 ⁺	0.918	0.943	0.817	0.895	0.660	0.794	0.401	0.739	0.167	0.695

(N. Sandulescu PRC 55 (1997))

GS1: amplitude X adjusted to reproduce corresponding two-particle SM state in ¹⁰²Sn

GS2: amplitude X adjusted for each system separately by diagonalizing the interaction in the $\nu=2$ space

Coulomb Excitation of 110,108,106 Sn

(注) 注 少へで ISWS07I 36/38

(7)

Appendix IX: ⁵⁸Ni ENSDF

⁵⁸ Ni		Q _β ·=-8565.5 <i>1</i>	Adop Publi 4 S _n =12217.0	opted Levels, Gammas 200609 iblished: 2000 ENSDF. 17.0 <i>I8</i> S _p =8172.5 5 Q _α =-6400.2 6 2003Δu03						
History Type Author Citation Cutoff Date										
	Full evaluation Balraj Singh ENSDF 26-Sep-2006									
Elevel	J^{π}	T 1/2	XREF		Comments					
0.0 ⁱ	0+	stable	ABCDEFGHIJ KLMNOPORST UV	T _{1/2} : >7 ⁵⁸ Fe, an 811-ke ^V 1982Be	0×10^{20} y for decay by $\epsilon\beta^+$ channel to the id >4.0×10 ²⁰ y for decay by the same model of ⁵⁸ Fe (<u>1993Va19</u>). Others: <u>1984</u> 20.	e 0+ g.s. of ode to the 2+, <u>No09</u> ,				
1454.0 ⁱ <i>1</i>	2+	0.880 ps <i>14</i>	ABCDEFGHI KLMNOPORST UV	μ =+0.0 μ =+0.11 B(E2)= $^{12}=$ J^{π} : 145 $T_{\frac{1}{2}}$: from from Bi 60 from Bi 60 from Bi 60 from Bi 9001 publishing by 2001 μ : other	76 (76) (2001Kc08) 1.6 (1989(Ra17)) 0.7075 18 3.7748 fm 14 (2004An14 evaluation). 4γ is E2. m 2001Kc08, Coulomb excitation. Others E2) in (ex), 618 fs 16 from B(E2) in Co (γγ) and 638 fs +98-70 in (ργ), 2001 on gives 0.627 ps 18 from consideration - ments from Coulomb excitation, (γγ) and 16 from 1959 to 1983. The B(E2)(↑)=0.0 Ra27 is agreement with adopted value gi -0.12 24 (1980Ra12). See also 200552	s: 740 fs 40 ul. ex., 680 fs Ra27 of about 17 d (e.e') 595 20 adopted ven above. 4 compilation.				
2459.1 ¹ 3	4+	3.7 ps 4	BCDEF HI K MNOPOR UV	J ^π : L(o T _{1/2} : fro	$\alpha' = 4.$ m 2001Ke08, Coulomb excitation.					
2775.2 2	2+	0.38 ps +12-9	A FG I LMNOP R	J^π: L(0	,α')=2.					

▲ ■ ► ■ ∽ ೩ C ISWS07I 37 / 38

() < </p>