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• What?
– Delivering unprecedented pure beams of exotic n-

rich Cd and Zn.
• How?

– Trapping contaminant elements (produced alkalis 
such as Rb, Cs and also In and Ga) by the addition 
of a quartz insert in the transfer line.
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• Release efficiency depends on the bulk target 
diffusion and effusion characteristics

• Effusion consists of 3 important parameters:
– Number of collisions (ncoll) with the surface of the materials
– The mean sticking time (ts) per collision (depending on temperature and 

adsorption enthalpy)
– The mean flight time (tfly) between collisions (depending on the 

geometry, the mass and temperature)

Introduction
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• RIB intensity equation:
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Beam Purity!
• The Beam Purity BPBP is the ratio of the desired isotope yield to 

all other, including molecular side bands and multiple charge 
states.
– BP is a function of:

• Cross sections and target thickness
• Projectile nature and flux
• Mass resolution of the separator
• Ion-source efficiencies
• Released fractions (diffusion effusion ad-de-sorption 

enthalpies)
• Chemical nature of element, structural materials (ad-ab-

de-sorption enthalpies) and surface purities
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• Isothermal chromatography is 
applied to design a selective 
Transfer Line in an ISOL 
Target and Ion Source.

• For the production of noble 
gases, the less volatile 
elements are condensed in the 
transfer line.

Beam Purity!

Zn80
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• The selective ionisation 
provided by laser (RILIS) 
suffers from isobaric 
contamination.

• In 1986 Kratz et al. showed 
that the quartz has the 
properties of delaying alkalis 
(130Cs).

Alkali contaminant

Isotope of interest
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• Frenkel equation:

• Exponential decay expression:

• Combination gives:

scollflyeff tntt

Theory…
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• To efficiently trap alkalis, the transfer line must 
operate within a certain range of temperatures, then 3 
prototypes have been designed with a controlled 
transfer line temperature:
– From 700ºC to 1100ºC (Version 1.0)
– From 300ºC to 800ºC (Version 2.0 and 3.0)

• RIBO code allowed the estimation of the quartz 
dimensions to be used according to the number of 
collisions: 50mm long tube, 6mm diameter

• An ISOLDE UC2-C target/ion source unit operates at 
temperature above 2000ºC: estimation of the heat 
flow mandatory to avoid the quartz to melt 

Design of the transfer line
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• Heat transfer equations…

qx heat flow rate (W), A1 section through which the heat is conducted (m2), dT/dL
temperature gradient along the line (K/m) and k thermal conductivity (W/m.K) 

qrad radiated heat flow (W). A2 is the area (m2), ε emissivity, σ Stefan-Boltzmann constant 
(σ = 5.67 X 10-8 W/m2. K4). Ts temperature of the surface, T0 temperature of the 
surrounding surface. 

…and…
• Simulation software: ANSYS Workbench 11.0
…have been used to estimate the temperature along the 

transfer line.

Design of the transfer line
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Design of the transfer line
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Design of the transfer line
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Design of the transfer line

Quartz Transfer Line version 1.0
(before the final assembly)

Quartz Transfer Line version 2.0
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Design of the transfer line

Schematic layout of the quartz transfer line version 3.0

S.Marzari

S.Marzari
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– 80Rb (t1/2=34s) suppressed by 4 orders of magnitude when compared to a standard 
UC2-C unit:

• 3.3x103 ions/μC (transfer line at 400ºC); 1.8x108 ions/μC (for standard unit) 
– Significant quartz transfer line temperature effect on the 80Rb yields
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U. Köster et al.
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– 126Cs (t1/2=98.4s) suppressed by 2 orders of magnitude:
• 2.3x103 ions/μC (transfer line at 308ºC); 4.6x105 ions/μC (transfer line at 

550 ºC) 
– Significant quartz transfer line temperature effect on the 126Cs yields

Online Results
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Online Results
Alkali Suppression
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80Rb 34000 3.3x103 1.8x108 54500
46K 115200 6.5x105 5.4x107 80
8Li 840.3 1.7x105 3.9x107 230

142Cs 1780 2.5x105 1.5x108 600
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Isotope Half life (ms) TL Temperature (ºC) Yield (atoms/μC)
75Zn 10200 700 7.3x106

77Ga 13200 700 9.9x105

114In 72000 700 2.7x105

77Ga 13200 300 4.8x104

96Sr 1070 300 1.5x104

207Tl (t1/2=4.77min) has been measured with the version 3.0 of the quartz line: 
• Yield of 6.91x105 ions/μC ( transfer line at 550 ºC) 
• Suppression of 207Fr contaminant
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Summary

• Chemical selectivity was achieved by specific 
interaction of the contaminant with a catching 
material inserted in the transfer line 

• Clear dependence of the 80Rb and 126Cs suppression 
as a function of the quartz temperature was observed

• Enthalpy of adsorption has been estimated for the 
– Rb (-ΔHad = 242 kJ/mol) 
– Cs (-ΔHad = 145 kJ/mol) elements and are ~60% of values 

by isothermal chromatography
• 207Tl has been measured (suppression of 207Fr)
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Future Investigations

• Test of a prototype operating with a broader range of 
temperature (from 200ºC to 1200 ºC)

• Further investigations on experimental data could lead to 
physical models to deduce the suppression factor for the 
different other isotopes

• The use of other materials to suppress different 
contaminants (collaboration C. Jost, ORNL)
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Thank you for your attention!

>>>>Elian.Bouquerel@cern.ch <<<<
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