

ISOLDE Workshop and Users meeting 07/08

Selective contaminant adsorption for RIB purification at ISOLDE

<u>E. Bouquerel</u>, D. Carminati, R. Catherall, M. Eller, J. Lettry, S. Marzari, T. Stora and the ISOLDE Collaboration

CERN, CH-1211, Geneva, Switzerland

- What?
 - Delivering unprecedented pure beams of exotic nrich Cd and Zn.
- How?
 - Trapping contaminant elements (produced alkalis such as Rb, Cs and also In and Ga) by the addition of a quartz insert in the transfer line.

Introduction

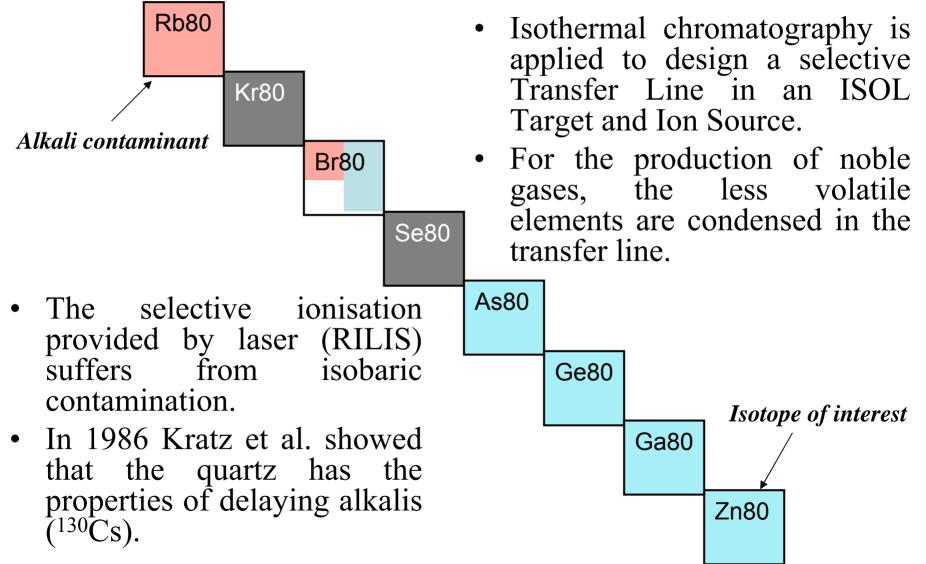
• RIB intensity equation:

$$I_{RIB} = (\sigma_{prod} \cdot N_{t \arg et} \cdot I_{prim-beam}) \cdot \varepsilon$$

Production crossTargetPrimary beamEfficiencies (release,sectionthicknessintensityionisation, transport...)

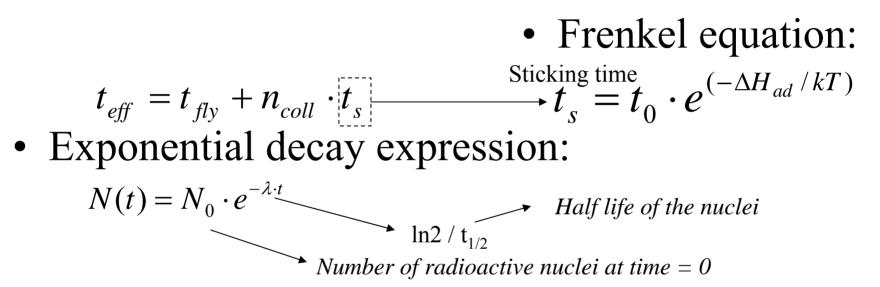
- Release efficiency depends on the bulk target diffusion and **effusion** characteristics
- Effusion consists of 3 important parameters:
 - Number of collisions (n_{coll}) with the surface of the materials
 - The mean sticking time (t_s) per collision (depending on temperature and adsorption enthalpy)
 - The mean flight time (t_{fly}) between collisions (depending on the geometry, the mass and temperature)

Beam Purity!

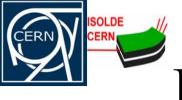


- The Beam Purity **BP** is the ratio of the desired isotope yield to all other, including molecular side bands and multiple charge states.
 - BP is a function of:
 - Cross sections and target thickness
 - Projectile nature and flux
 - Mass resolution of the separator
 - Ion-source efficiencies
 - Released fractions (diffusion effusion ad-de-sorption enthalpies)
 - Chemical nature of element, structural materials (ad-abde-sorption enthalpies) and surface purities

Beam Purity!






• Combination gives:

 $f_{th}(\lambda,T) = \frac{N_0}{N(\lambda,T)}$ Estimation of suppression factor $\int f_{th}(\lambda,T) = e^{\lambda \cdot t_0 \cdot \int \frac{dn_{coll}}{dl} e^{(-\Delta H_{ad} / kT(l))} dl}$

- Design of the transfer line
- To efficiently trap alkalis, the transfer line must operate within a certain range of temperatures, then 3 prototypes have been designed with a controlled transfer line temperature:
 - From 700°C to 1100°C (Version 1.0)
 - From 300°C to 800°C (Version 2.0 and 3.0)
- RIBO code allowed the estimation of the quartz dimensions to be used according to the number of collisions: 50mm long tube, 6mm diameter
- An ISOLDE UC₂-C target/ion source unit operates at temperature above 2000°C: estimation of the heat flow mandatory to avoid the quartz to melt

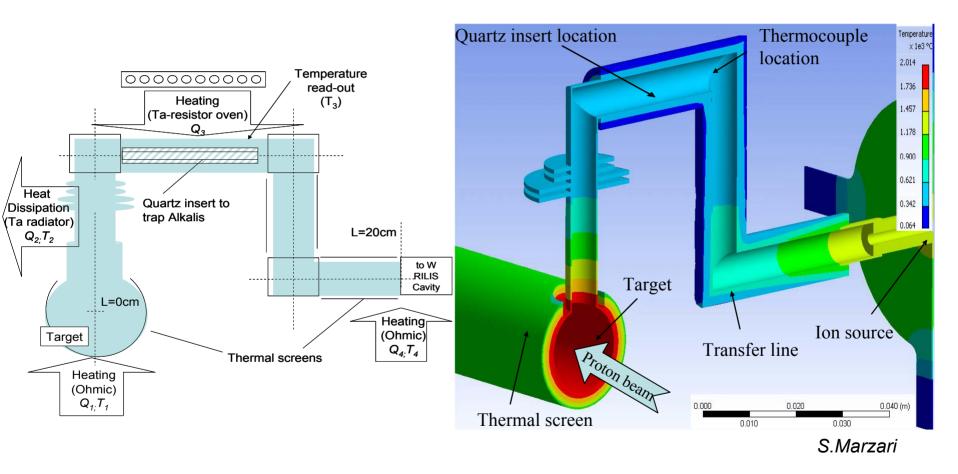
Design of the transfer line

• Heat transfer equations...

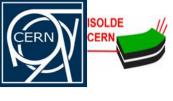
$$q_x(L) = k.A_1(L).\frac{dT}{dL}$$
 $q_{rad}(L) = A_2(L).\varepsilon.\sigma.(T_s^4(L) - T_0^4)$

 q_x heat flow rate (W), A_1 section through which the heat is conducted (m2), dT/dL temperature gradient along the line (K/m) and k thermal conductivity (W/m.K) q_{rad} radiated heat flow (W). A_2 is the area (m²), ε emissivity, σ Stefan-Boltzmann constant (σ = 5.67 X 10-8 W/m². K⁴). T_s temperature of the surface, T_0 temperature of the

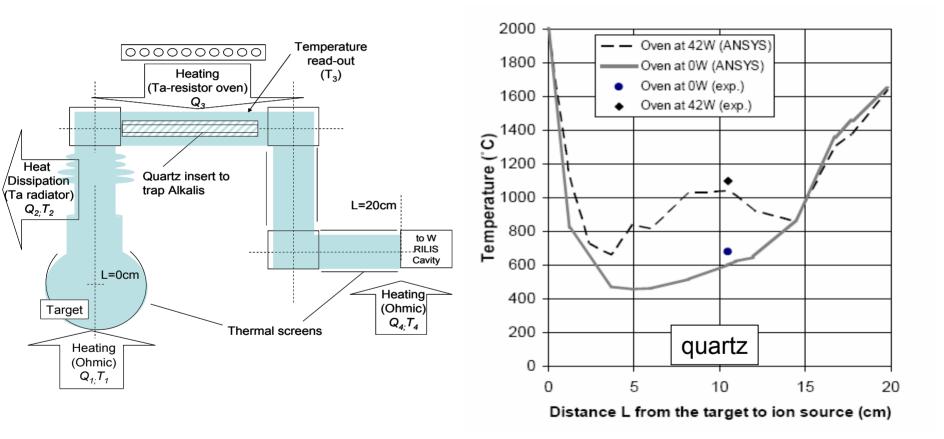
surrounding surface.


...and...

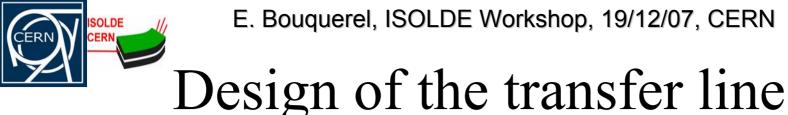
- Simulation software: ANSYS Workbench 11.0
- ...have been used to estimate the temperature along the transfer line.

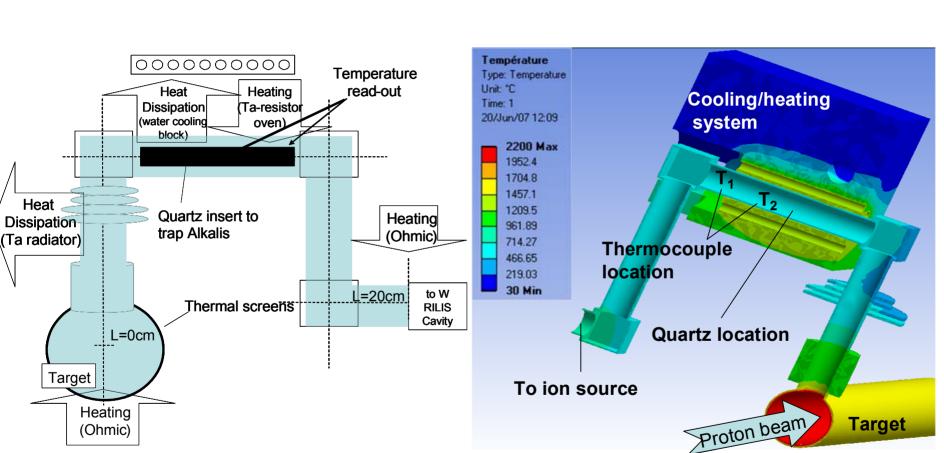

Design of the transfer line

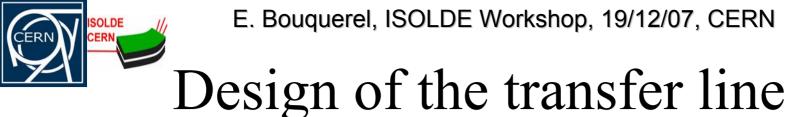
OLDE

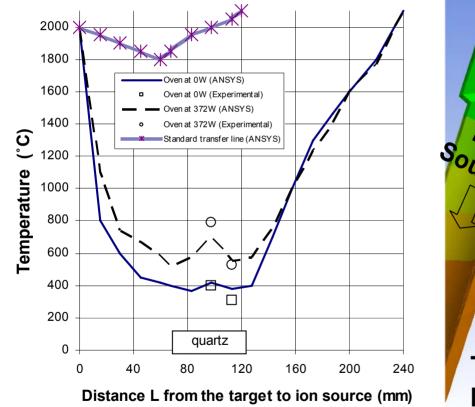


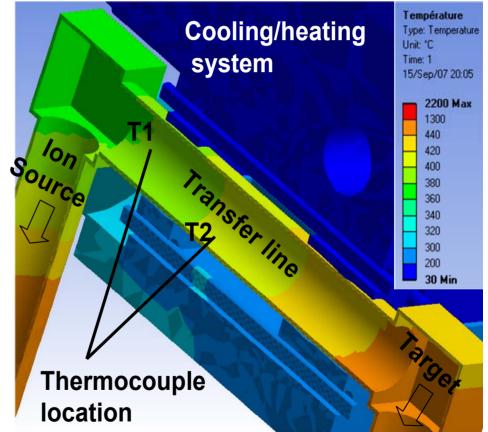
Schematic layout and temperature profile within the quartz transfer line (v.1.0)



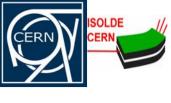

Design of the transfer line


Schematic layout and temperature profile within the quartz transfer line (v.1.0)

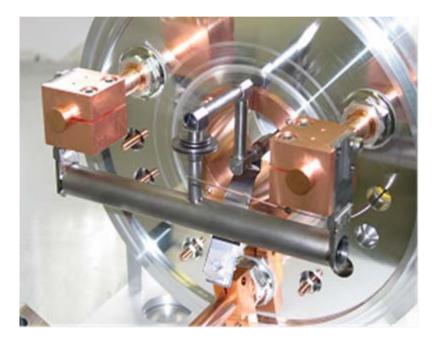

MARIE CURIE PARIS-SUD 11



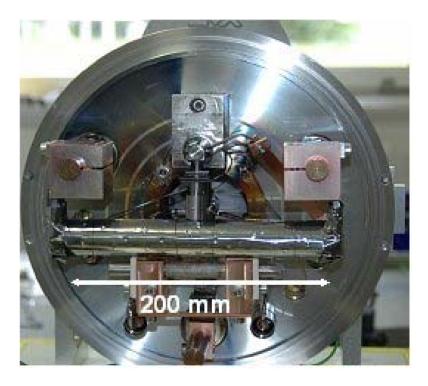
Schematic layout and temperature profile within the guartz transfer line (v.2.0)



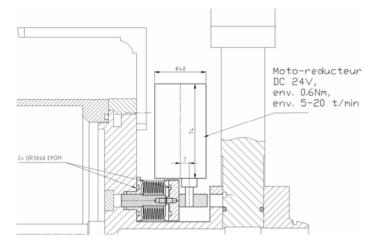
MARIE CURIE PIC.CUD H



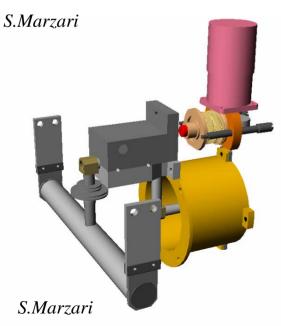
Schematic layout and temperature profile within the quartz transfer line (v.2.0)



Design of the transfer line



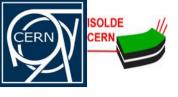
Quartz Transfer Line version 1.0 (before the final assembly)



Quartz Transfer Line version 2.0

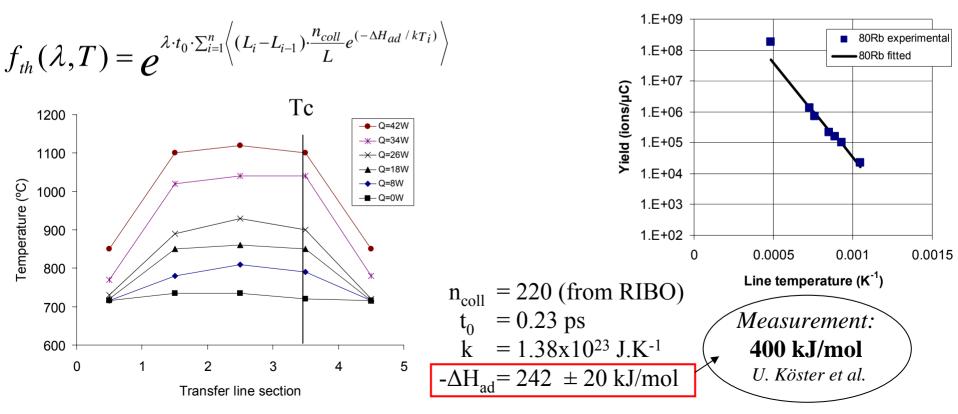
Design of the transfer line

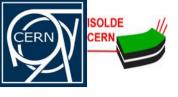
OLDE



MARIE CURIE

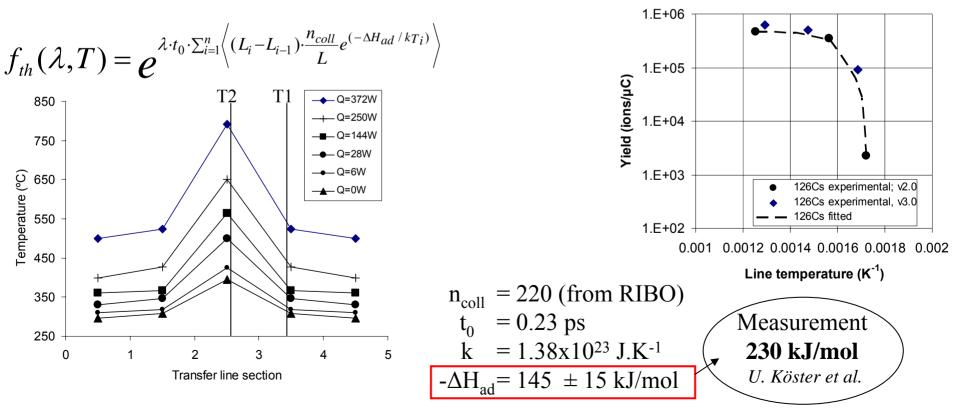
RIS-SUD 11

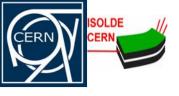

Schematic layout of the quartz transfer line version 3.0



E. Bouquerel, ISOLDE Workshop, 19/12/07, CERN Online Results Alkali Suppression

- 80 Rb (t_{1/2}=34s) suppressed by 4 orders of magnitude when compared to a standard UC₂-C unit:
 - $3.3x10^3$ ions/ μ C (transfer line at 400°C); $1.8x10^8$ ions/ μ C (for standard unit)
- Significant quartz transfer line temperature effect on the ⁸⁰Rb yields

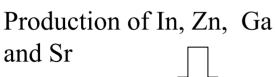




E. Bouquerel, ISOLDE Workshop, 19/12/07, CERN Online Results Alkali Suppression

- 126 Cs ($t_{1/2}$ =98.4s) suppressed by 2 orders of magnitude:
 - 2.3x10³ ions/µC (transfer line at 308°C); 4.6x10⁵ ions/µC (transfer line at 550 °C)
- Significant quartz transfer line temperature effect on the ¹²⁶Cs yields

E. Bouquerel, ISOLDE Workshop, 19/12/07, CERN Online Results Alkali Suppression


 207 Tl (t_{1/2}=4.77min) has been measured with the version 3.0 of the quartz line:

- Yield of 6.91×10^5 ions/ μ C (transfer line at 550 °C)
- Suppression of ²⁰⁷Fr contaminant

		Yield		
		Quartz line	Standard ISOLDE	Suppression
	Half Life (ms)	T=300°C	Ucx T=1800°C	factor
⁸⁰ Rb	34000	3.3x10 ³	1.8x10 ⁸	54500
⁴⁶ K	115200	6.5x10 ⁵	5.4x10 ⁷	80
⁸ Li	840.3	1.7x10 ⁵	3.9x10 ⁷	230
¹⁴² Cs	1780	2.5x10 ⁵	1.5x10 ⁸	600

Other alkali suppression factors

1.E+07 r

At/µC)	•			
Yield (At/µC) 1.E+06	- ◆ - 75Zn -▲- 114ln -■- 77Ga			
1.E+05				
7.0E	E-04 8.0E-04	9.0E-04	1.0E-03	1.1E-03
	Quartz line	Temperat	ure, 1/T ₃ ((1/K)

Isotop	e	Half life (ms)	TL Temperature (°C)	Yield (atoms/µC)
⁷⁵ Zn	-	10200	700	7.3x10 ⁶
⁷⁷ Ga	l	13200	700	9.9x10 ⁵
¹¹⁴ In		72000	700	2.7x10 ⁵
⁷⁷ Ga	l	13200	300	4.8x10 ⁴
⁹⁶ Sr		1070	300	1.5x10 ⁴

Summary


- Chemical selectivity was achieved by specific interaction of the contaminant with a catching material inserted in the transfer line
- Clear dependence of the ⁸⁰Rb and ¹²⁶Cs suppression as a function of the quartz temperature was observed
- Enthalpy of adsorption has been estimated for the $\text{Rb}(-\Delta H_{ad} = 242 \text{ kJ/mol})$
 - Cs (- ΔH_{ad} = 145 kJ/mol) elements and are ~60% of values by isothermal chromatography
- ²⁰⁷Tl has been measured (suppression of ²⁰⁷Fr)

Future Investigations

- Test of a prototype operating with a broader range of temperature (from 200°C to 1200 °C)
- Further investigations on experimental data could lead to physical models to deduce the suppression factor for the different other isotopes
- The use of other materials to suppress different contaminants (collaboration C. Jost, ORNL)

References

- E. Bouquerel, R. Catherall, M. Eller, J. Lettry, S. Marzari, T. Stora and the ISOLDE Collaboration, "*Purification of a Zn Radioactive Ion Beam by alkali suppression in a quartz line target prototype*" (European Phys. Journal A.) *in press*.
- U. Köster, O. Arndt, E. Bouquerel,' *Progress in ISOL target-ion-source-systems*', Nuclear Instruments and Methods in Physics Research, Section B (NIMB). (to be *published*)
- S. Sundell, H. Ravn and the ISOLDE Collaboration, NIM B70 (1992) 160.
- V.N.Fedosseev et al," *Development of the RILIS Research laboratory at ISOLDE*", CERN-INTX-2006-015, INTC-I-065, 20.01.2006
- K.L. Kratz et al., "The Beta-decay half-life of ¹³⁰₄₈Cd₈₂ and its importance for astrophysical r-process scenarios", CERN-EP/86-189, 18 November 1986.
- M. Santana Leitner, A Monte Carlo Code to Optimize the Production of Radioactive Ion Beams by the ISOL Technique, PhD. Thesis, UPC-ETSEIB / CERN.
- M. Turrion Nieves, Private Communication CERN.
- Fundamentals of Heat and Mass Transfer Fifth Edition, Frank P Incropera, David P DeWitt, John Wiley & Sons 2002, pp 53, pp 699.
- <u>http://www.ansys.com/products/workbench.asp</u>.
- ISOLDE target reference UC2020.

>>>>Elian.Bouquerel@cern.ch <<<<

Thank you for your attention!