Type: not specified

Breakup of the 18.2 MeV state in 11Be: New decay modes.

Wednesday 19 December 2007 09:45 (20 minutes)

The ¹¹Li β -decay offers a unique window to understand the nuclear structure far beyond the valley of stability. The β -delayed charged particle emission of ¹¹Li has been the subject of several previous studies [1-4]. The established channels involve the emission α particles (2α +3n), ⁶He (⁶He+ α +n), tritons (⁸Li+t), deuterons (⁹Li+d) and the emission of 1n and 2n feeding the ground states of ¹⁰Be and ⁹Be respectively. The two channels involving α particles were previously studied in a ¹¹Li β -decay coincidence experiment by Langevin et al.[4]. The coincidence charged particle spectrum was explained as due to the breakup of two states in ¹¹Be at 10.6 and 18.2 MeV excitation energy. The breakup of the latter was assumed to ocur by the three body channel $n\alpha^{6}$ He and the 5-body $3n2\alpha$. However, a recent ¹¹Li β -decay experiment performed by our collaboration [7] observed structures in the coincidence scatter plot interpreted as the sequential break-up of ¹¹Be through intermediate ^AHe resonances.

In this work we present the first results of a new ¹¹Li β -decay experiment we performed at ISOLDE to clarify our previous interpretation [7]. The experimental set-up, consisting of 3 DSSSD's, was optimized for maximum solid angle coverage while having good spatial resolution. This improvements allowed us to record five times as many statistics as in the previous experiment, and to obtain direct evidence of sequential three-body, $n\alpha^{6}$ He, break-up of ¹¹Be through the ground state of ⁷He. Moreover, by reconstructing the neutron energy using energy and momentum conservation, we have identified two new states in ¹¹Be decaying through this new ⁷He channel at 15.25, 16.18 MeV on top a previously known state at 18.0 MeV. 1] M. Langevin et al., Phys Lett. B146 (1984) 176.

- [2] M. Langevin et al., Nucl. Phys. A366 (1981) 449.
- [3] I. Mukha et al., Phys. Lett. B367 (1996) 65.
- [4] M.J.G. Borge et al., Nucl. Phys. A613 (1997) 199.
- [5] M. Madurga et al., in preparation

Primary authors: Dr FYNBO, Hans (Physics and Astronomy (Univ. of Aarhus)); Dr RIISAGER, Karsten (ISOLDE); Prof. GARCIA BORGE, Maria Jose (Consejo Superior de Investigaciones Cientificas (CSIC)); Mr MADURGA FLORES, Miguel (Consejo Superior de Investigaciones Cientificas (CSIC)); Dr TENGBLAD, Olof (Consejo Superior de Investigaciones Cientificas (CSIC))

Co-authors: Prof. JONSON, Bjorn (Fundamental Physics (Chalmers Univ.)); Prof. NYMAN, Goran (Fundamental Physics (Chalmers Univ.))

Presenter: Mr MADURGA FLORES, Miguel (Consejo Superior de Investigaciones Científicas (CSIC))

Session Classification: Nuclear Physics II