R. Mantovan¹, M. Fanciulli¹, H.P. Gunnlaugsson², G.Weyer²,

R. Sielemann³, D. Naidoo⁴, K. Bharuth-Ram⁵, S. Olafsson⁶, G. Langouche⁷, K. Johnston⁸

¹Laboratorio Nazionale MDM CNR-INFM, Agrate Brianza (MI) 20041, Italy ²Department of Physics and Astronomy,University of Aarhus, DK-8000 Århus C, Denmark

³*Hahn-Meitner Institute, 14109 Berlin, Germany*

⁴School of Physics, University of the Witwatersrand, WITS 2050, South Africa
⁵School of Physics, University of KwaZulu-Natal, Durban 4041, South Africa
⁶Physics Department, Science Institute University of Iceland, Iceland
⁷Department of Physics, Katholieke Universiteit, Leuven, Belgium
⁸EP Division, CERN, CH-1211 Geneva 23, Switzerland

(CERN-INTC-2006-005; INTC-**P-203**.)

Outline

Motivation

- ⁵⁷Fe Mössbauer spectroscopy at ISOLDE-CERN
- Mössbauer results on 57 Mn ($\rightarrow {}^{57}$ Fe) -implanted ZnO
- Dose dependence effects
- An explanation for the observed magnetism in terms of defects
- Conclusions

Magnetism in ZnO

[T. Dietl, H. Ohno, F. Matsukura, J. Cibert., and D. Ferrand, Science **287**, 1019 (2000)]

Fig. 3. Computed values of the Curie temperature $T_{\rm C}$ for various p-type semiconductors containing 5% of Mn and 3.5 \times 10²⁰ holes per cm³.

•Magnetic oxides/semiconductors: multifuncional materials for spintronics

•Curie temperature >>300 K is needed

Magnetism in ZnO: contradictory experimental findings

Compound	TM content	Substrate	Fabrication method	Growth temperature (°C)	Oxygen pressure (Torr)	Post-annealing	$T_{c}(\mathbf{K})$	Notes
ZnO:Mn	< 0.35	c-Sapphire	PLD	600	5×10^{-5}		N/A	
ZnO:Mn	0.36	c-Sapphire	PLD	600	5×10^{-5}		N/A	Spin-glass
Zn1_xTMxO		c-Sapphire	PLD	500-600	1 × 10 ⁻⁹ to 10 ⁻⁶		N/A	
ZnO:Co	0.02 - 0.5	c-Sapphire	PLD	300-700	1 × 10 ⁻⁶ to 10 ⁻¹			Spin-glass
ZnO:Mn	0.01-0.36	c-Sapphire	PLD	610	5×10^{-5}			Paramagnetic
ZnO:(Co, Mn, Cr, or Ni)	0.05-0.25	r-Sapphire	PLD	350-600	$2-4 \times 10^{-5}$		280-300	2 µB/Co
ZnO:Ni	0.01-0.25	c-Sapphire	PLD	300-700	1×10^{-5}			Superparamagnetic or ferromagnetic
ZnO:V	0.05-0.15	r-Sapphire	PLD	300	10 ⁻⁵ to 10 ⁻³		>350	$0.5 \mu_{\rm B} V^{-1}$
ZnO:(Co, Fe)	< 0.15	SiO ₂ /Si	Magnetron sputtering	600	2×10^{-3}	600 °C, 10 min, 1.0 × 10 ⁻⁵ Ton	>300	12-15 emu cm ⁻³
ZnO:Co	0.03-0.05	Bulk ZnO	Ion implantation			700 °C, 5 min under O2	>300	Oriented Co precipitates
ZnO:Co	0-0.25	c-Sapphire	Sol-gel	<350		700 °C, 1 min	>350	0.56 μ _B /Co
ZnO:Mn	0-0.3	c-Sapphire	PLD				>30-45	0.15-0.17 μg/Mn
ZnO:Mn	< 0.04		Sintered pellets	500-700	Air, atmospheric		>425	0.006 emu gm ⁻¹ ,
			-		pressure			single phase
ZnO:Mn	0.02	Fused quartz	PLD	400			>425	0.05 emu gm ⁻¹ , single phase
ZnO:(Fe, Cu)	0-0.1	Solid state reaction	897				5.50	0.75 μ _B /Fe
ZnO:Co	0.015		PLD	650	5×10^{-5}		>300	Ferromagnetic
ZnO:(Co, Al)	0.04 - 0.12	Glass	RF sputtering		1 × 10 ⁻² in Ar		>350	0.21 µB/Co
ZnO:Mn	0.04-0.09	c-Sapphire	Reactive sputtering	200-380			>400	3 μ _B /Co
ZnO:(Mn, Sn)	0-0.3		Implantation			5 min, 700 °C	2.50	Ferromagnetic

[S. J. Pearton et al., Semicond. Sci. Technol. **19** (2004) R59–R74.]

•The (3d-) doped and pure ZnO has been reported to be ferromagnetic, paramagnetic, and in the spin glass state

•The origin of the magnetism in ZnO is still a matter of debate in the scientific community

Mössbauer spectroscopy at ISOLDE-CERN (IS-443)

- Implantation of ZnO with radioactive ${}^{57}Mn^+$ (T_{1/2} = 1.5 min.), decaying to the 57m Fe Mössbauer level (T_{1/2} = 100 ns)
- 100% element selective → structural and magnetic information at the Fe sites
- The implantation process induces a large amount of defects (~10³/ion)
 → their interaction with the implanted Mn/Fe probe can be studied
- Fluences ~10¹⁰-10^{13 57}Mn⁺/cm² to record a Mössbauer spectrum (local concentration ~10¹⁶ cm⁻³)→single isolated Fe impurities (~10⁻⁵ Fe at.%) →truly dilute semiconductors are produced

study of the magnetism at the atomic scale and role of defects

Mössbauer spectroscopy at ISOLDE-CERN (IS-443)

Mössbauer spectroscopy at ISOLDE-CERN (IS-443)

•Typically ~5 min to record one spectrum

Hyperfine interactions at the ⁵⁷Fe nuclear sites

Roberto Mantovan, Laboratorio Nazionale MDM

Hyperfine interactions at the ⁵⁷Fe nuclear sites

$$E_m = -g\mu_N Hm_I$$

$$\mu = -g\mu_N m_I$$

Mössbauer sextet means magnetism at the Fe site

Mössbauer results: strong magnetic contribution >300 K

[G. Weyer, H.P. Gunnlaugsson, R.

Mantovan, M. Fanciulli, D. Naidoo, K.

Bharuth-Ram, T. Agne, J. Appl. Phys.

Mössbauer component	B _{hf} (T)	Isomer shift, IS (mm/s)	Quadrupole splitting, QS (mm/s)
D2	-	0.80(1)	0.3(2)
D3	-	0.55(2)	0.73(3)
Sextet	48.3(2)	0.20(2)	0.13(3)
DistIII	37(2)	0.13(4)	-0.83(5)
Distll	12(3)	0.82(5)	-0.11(8)

no secondary phases
the observed magnetism
must be due to the
interaction of Mn/Fe with the
dense damage cascades
created during implantation

102, 113915 (2007)]

Mössbauer results: annealing behavior

Mössbauer results: time delayed measurements

•Time-dependence of the thermally activated annealing. Principles:

- 1. Implant (t = 0)
- 2. Start measurement
- 3. Measure $(0 < t < T\frac{1}{2})$
- 4. Measure $(T\frac{1}{2} < t < 5T\frac{1}{2})$

•The conversion of the sextet→D2 occurs on a minute time scale

•The time and temperature dependence of spectral fractions suggest a scenario in which the association of Fe_{Zn} with defect complexes takes place in the 300/462 K and the dissociation of the complex is at \geq 600 K

Roberto Mantovan, Laboratorio Nazionale MDM

Dose dependence in Mn/Fe-implanted ZnO

•At the early stage of implantation there is a low magnetic contribution

•The sextet+distIII fractions increases with increasing the implanted dose

The implanted dose is estimated by considering the background Mössbauer counts and a constant fluence

The dose dependence can be understood by assuming that the implantation-induced defects are responsible for the observed magnetism

Implantation of 3d elements is possibly not needed to observe magnetism in ZnO, but the implantation-induced defects are necessary

Roberto Mantovan, Laboratorio Nazionale MDM

TRIM for the ⁵⁷Mn and ²³Na implantations in ZnO

The damage cascades after the ⁵⁷Mn and ²³Na implantation (E=60 keV) overlap

[G. Weyer, H.P. Gunnlaugsson, R. Mantovan, M. Fanciulli, D. Naidoo, K. Bharuth-Ram, T. Agne, J. Appl. Phys. **102**, 113915 (2007)]

Roberto Mantovan, Laboratorio Nazionale MDM

Defects induced by ion implantation

[G. Weyer, H.P. Gunnlaugsson, R. Mantovan, M. Fanciulli, D. Naidoo, K. Bharuth-Ram, T. Agne, J. Appl. Phys. **102**, 113915 (2007)]

[G. Weyer, H.P. Gunnlaugsson, R. Mantovan, M. Fanciulli, D. Naidoo, K. Bharuth-Ram, T. Agne, J. Appl. Phys. **102**, 113915 (2007)]

Assumption: V_{Zn} are mobile at \ge 300 K

[G. Weyer, H.P. Gunnlaugsson, R. Mantovan, M. Fanciulli, D. Naidoo, K. Bharuth-Ram, T. Agne, J. Appl. Phys. **102**, 113915 (2007)]

Assumption: V_{Zn} are mobile at \ge 300 K

[G. Weyer, H.P. Gunnlaugsson, R. Mantovan, M. Fanciulli, D. Naidoo, K. Bharuth-Ram, T. Agne, J. Appl. Phys. **102**, 113915 (2007)]

- •The majority of the Fe atoms are located on Zn sites in a high-spin Fe³⁺ state at ≤600 K.
- •The sextet is due to Fe_{Zn} -O-V_{Zn} complexes (V_{Zn} mobile at T>RT on a minute time scale) that are stable up to ~600 K.
- •The formation/annealing of the magnetism in ZnO is interpreted as occurring/disappearing upon the association/dissociation of Mn/Fe complexes with the lattice defects created during the implantation process.

- •The majority of the Fe atoms are located on Zn sites in a high-spin Fe³⁺ state at \leq 600 K.
- •The sextet is due to Fe_{Zn} -O-V_{Zn} complexes (V_{Zn} mobile at T>RT on a minute time scale) that are stable up to ~600 K.
- •The formation/annealing of the magnetism in ZnO is interpreted as occurring/disappearing upon the association/dissociation of Mn/Fe complexes with the lattice defects created during the implantation process.

