Local Probe Studies on Highly Distorted Rare-Earth Manganites (IS390)

> T. M. Mendonça, J. S. Amaral, A. L. Lopes, J. G. Correia, P. B. Tavares, A. M. Pereira, V. S. Amaral, J. P. Araujo

Outline

→ The Rare Earth's + MnO₃ (RMnO₃) family and their questions
Ferroelectricity + Ferromagnetism (and Ferroelasticity)
→ Experimental method

Sample preparation and macroscopic characterization

^{111m}Cd Perturbed Angular Correlation (PAC):

nanoscopic scale information \implies probing of local phenomena

 \rightarrow PAC preliminary results

 \rightarrow Summary

Multiferroics: Materials showing Ferroelectricity, Ferromagnetism (and Ferroelasticity)

 $BiMnO_2$ (Mn^{3+})

48

M. Vopsaroiu et al., Journ. Phys. D: Appl. Phys. 40 (2007) 5027 N. Hill et al., Phys. Rev. B 59 (1998), 8759

Orthorhombic Perovskites Pnma

Hexagonal P6₃/m

Hexagonal RMnO₃ can be stabilized as orthorhombic, with synthesis under pressure

RMnO₃ versus ionic radius

FE compounds Lu Yb Tm Er Ho Dy Tb Gd Eu Sm Nd Pr 150*±* RMnO₃ Mn3 03 Paramagnetic T_{AFM/PM} (K) Mn2-Mn4 A-type AF -type 1.05 1.15 1.2 1.1 r_R (Å) Magnetic Phase Diagram for RMnO₃ for

Orthorhombic structures M. Tachibana et a.,Phys. Rev. B 75 (2007) 144425

Influence of ionic radius on macroscopic properties

What happens at atomic scale?

Simple dependence on T_{N} Orthorhombic: increase with R_i Hexagonal: decrease with R_i **Hexagonal Orthorhombic** 140-120 AFM/PM 100 00-0 80 60 0-0 40 0.85 0.90 0.95 1.00 1.05 Lu Yb Tm Er Y Ho Tb Gd Eu Pr Ca La R ionic radius (R^{3+})

Studied Compounds

Compound	Structure	Т _{ағм/рм} (К)	T _{FE} (K)	Z _{Relement}	Ionic radius _{R element} (R ³⁺) (nm)
LuMnO ₃	Hexagonal (S.G. <i>P6₃cm</i>)	90	>750	71	0.860
ErMnO ₃	Hexagonal (S.G.: <i>P6₃cm</i>)	80	833	68	0.890
YMnO ₃	Hexagonal (S.G.: <i>P6₃cm</i>)	71	920	39	0.900
HoMnO ₃	Hexagonal (S.G.: <i>P6₃cm</i>)	76	873	67	0.901
GdMnO ₃	Orthorhombic (S.G.: <i>Pnma</i>)	42	<13	64	0.940
EuMnO ₃	Orthorhombic (S.G.: <i>Pnma</i>)	47	-	63	0.960

Sample preparation and structural characterization

J.-S. Zhou et al., Phys. Rev. B 74 (2006), 014422 T. Mori et al., Materials Lett. 54 (2002), 238

Perturbed Angular Correlations PAC

Room Temperature Results

573 K Preliminary Results

Assymetry parameter vs temperature: EFG₁

EuMnO₃: behavior as function of temperature

Decrease of W with temperature due to an increase of atomic vibrations (typical in other Perovskites)

Measurement@10K: R(t) spectrum different from other temperatures. Hints changes between 10k and 20K. Dielectric constant measurements show a peak below 20K.

Summary

<u>Hexagonal Manganites (R= Lu, Er, Y, Ho)</u>

Main EFG (EFG_1) with assymetry parameter decreasing with bigger R ionic radius which seems independent from temperature.

Orthorhombic Manganites (R= Gd and Eu)

Two EFG's: main EFG (EFG₁) with assymetry parameter increasing with R ionic radius.

The assymetry parameter evolution as function of the bond angle present the same behavior as $T_{AFM/PM}$: correlation between macroscopic and microscopic properties.

EuMnO₃: Behavior as function of temperature

Highly distorted environments ($\eta \sim 0.5$) for all range of temperatures. Frequency evolution following the trend found in other perovskites. Below 20K, changes in R(t) spectra hints an unknown transition (observed as a peak in dielectric measurements). Measurements on temperature in this range are metals for

Future Perspectives

your

Measurements on temperature for all compounds of this series. attention! Use of 3+ isotopes (e.g. $^{117}Ag^{/117}In^{/117}Cd$) allowing the measurement of the same sample at different temperatures.

Synthesis of new multiferroic/magnetoelectric systems (BiMnO₃, InMnO₃, PrCdMnO₃)