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Nobel Prize for Physics 2007

Albert Fert Peter Grunberg

"for the discovery of Giant Magnetoresistance "
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Nobel Prize for Physics 2007
"for the discovery of Giant Magnetoresistance "

Magnetoresistance: change of the electrical resistivity of a material 
with the application of magnetic field

Giant: usually and until then much smaller

How: control of materials: magnetic nanostructures/layers

What for?

Baibich et al PRL 61, 2472 (1988) Binasch et al PRL 39, 4828 (1989)
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Magnetic recording systems
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The discovery of GMR triggered a rapid boost in the magnetic recording 
density (IBM since 1997). Nowadays up to 1Tbit/in2
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Magnetic recording
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Magnetic recording
Two IBM computer hard drives, 1984 and 1999
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Magnetic recording
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magnetic recording density: bits & tracks
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Progress in magnetic recording density
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Going from longitudinal to perpendicular recording

Progress in magnetic recording density
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Giant magnetoresistance and magnetism

The discovery of GMR triggered immediately an extensive research on 
magnetic multilayers and the effect of magnetism on electron transport 
properties: spintronics.

GMR in multilayers (magnetic/non magnetic) is associated with the 
oscilatory magnetic coupling.

When the magnetization of the layers is parallel in zero magnetic field 
the effect is much smaller 
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Oscillatory Magnetic Interactions: RKKY 

Stohr, Siegmann: Magnetism (Springer, 2006)

a) Spin polarization of conduction electrons around a magnetic ion
b) spin polarization between two magnetic layers
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Oscillations in GMR:
Polycrystalline vs. 

Single Crystal Co/Cu 
Multilayers

S.S.P. Parkin et al, 
Phys. Rev. Lett. 66, 2152 
(1991)

Polycrystalline

Single crystalline

S.S.P. Parkin

Sputter deposited on MgO(100), MgO(110) 
and Al2O3 (0001) substrates using Fe/Pt seed 
layers deposited at 500C and Co/Cu at ~40C

Magnetic Multilayers: interface & crystallinity
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Magnetic nanostructures
Spin-Valve using FM-AFM exchange bias

Ferromagnetic layer coupled to an antiferromagnetic bottom layer
The relative orientation of the ferromagnetic layers magnetization is
changed with moderate magnetic fields; effect of roughness

(S. Parkin)
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Spin-Valve structure using FM-AFM exchange bias

Magnetic Tunnel junction
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Spin-Valve structure using FM-AFM exchange bias
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MRAM memories

Schematic illustration of a magnetic memory cell

The cell consists of a tunnel junction in which two ferromagnetic layers (e.g., 
cobalt) are separated by an insulator (e.g., Al2O3). 

The tunnel current flowing through the read line senses a resistance that depends 
on the relative orientation of the two magnetic layers, i.e., whether they are 
parallel (1) or antiparallel (0). 

The relative magnetization directions can be rotated by the magnetic field of a 
current flowing in a nearby write line.
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Magnetoelectronics&spintronics

Electronic semiconductor devices rely on the distinction of electron and 
hole charge carriers, that can be conveniently manipulated by locally 
created electric fields and concentration gradients, thus enabling devices 
from the transistor to modern microprocessors

The spin can be used to distinguish charge states by its alignment with 
respect to an external magnetic field: NEW LABEL

Spin electronic devices rely on transferring magnetic information from 
one part of a device to another by using nanoscale magnetic 
elements to encode it on itinerant electron spin channels

Spin Channels: Rare spin-flip events (Mott 1930´s)
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Spin asymmetry

Splitting of the conduction bands of spin-up or spin-down

Band splitting
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Spin asymmetry

The number of available
carriers (or empty states) 
with each spin will be
different. Also their mobilities
will be different, due to local 
scattering events whose
efficiency will depend on the
spin.

Minority carriers

Majority

carriers
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Spin asymmetry: half metallic ferromagnets

Near 100% 
polarization

Schematic band structure for a doped manganite 
(Mn3+/ Mn4+ mixed valence oxide)
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Spin injection

Polarized Current is passed from a ferromagnetic metal 
to a paramagnetic metal (Cu, Al, Ag)
Magnetization builds up in the new material : spin accumulation

The polarization survives a certain distance from the interface: 
spin diffusion length (Valet & Fert PRB (1993) 48, 7099)

3
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time
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Mechanisms of spin-dependent electron scattering and 
magnetoresistance phenomena

Spin dependent scattering: contribution to resistivity 
depends on the relative orientation of electron spin
and local magnetic moment of the scattering ion

O’Handley: Modern Magnetic Materials
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Mechanisms of spin-dependent electron scattering and 
magnetoresistance phenomena

Spin dependent scattering: electrons are less scattered in a 
second layer if magnetization is parallel

O’Handley: Modern Magnetic Materials
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Mechanisms of spin-dependent electron scattering and 
magnetoresistance phenomena

Spin dependent transport: electrons can cross to a second layer if
magnetization is parallel: low RESISTANCE

Two resistor model of GMR  O’Handley: Modern Magnetic Materials
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400 H (Oe)-40

400

110

H (kOe)-40 H //  [ 011]

spin-valve

Py/Co/Cu/Co/Py

ΔR/R~8-17% at RT
Field ~1 Oe NiFe + Co nanolayer

NiFe
Co nanolayer
Cu
Co nanolayer
NiFe
FeMn

multilayer

Co95Fe5/Cu
[110]

ΔR/R~110% at RT
Field ~10,000 Oe

H(Oe)
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[011]

GMR in Multilayers and Spin-Valves

S.S.P. Parkin

GMR in Multilayers and Spin-Valves
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Electron Spin Tunneling

Electron transport between metals through thin (~1 nm) 
insulating barriers occurs due to electron tunneling. 

Its efficiency depends on the density of states of both
electrodes (occupied and free states)

It is also spin dependent (Jullière, 1975)

This gives rise to TMR: tunneling magnetoresistance
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Electron Spin Tunneling

Each electrode

Tunnel Junction
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Tunneling
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Electron Spin Tunneling: Jullière Model for conductance
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Spin polarization



36

Spin filtering
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Electron Spin Tunneling
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Tunnel junction manganite/oxide/manganite
Half metallic ferromagnet: 95% polarization

Bowen et al, APL 2003

M. Bibes, 2007
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Tunnel junction metal/MgO/metal

S Parkin, Nat Mat. 2004
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Spin Transfer Torque
Manipulation of the magnetic moment of a ferromagnet without applying 
any magnetic field but only by a transfer of spin angular momentum from 
a spin-polarized electrical current. 

Chappert et al
nat. mat.(2007)

The torque can rotate and switch the magnetization, displace a domain 
wall separating two magnetic domains, or generate oscillations in the 
microwave frequency range.
Each of these effects is being investigated for new applications
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Indirect magnetic interactions : double-exchange

Mixed valence 3+ e 4+ Mn ions by
incorporationg divalent Ca in LaMnO3

( )( )La Ca Mn Mn O1-x
3+

x
2+

1-x
3+

x
4+

3

Antiferromagnetic insulator

Ferromagnetic metallic behaviour
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Indirect magnetic interactions : double-exchange

Electronic distribution of valence d 
electrons in Mn3+ e Mn4+

ferromagnetic coupling in
manganites  by ‘double exchange’

Simultaneous transfer of an electron
(eg) of Mn3+ to oxygen and from this to 
a neighbouring Mn4+ ion.
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Local charge and spin transfer mechanism/interaction

The interaction takes the form
U = Jdt cos(θ/2) 

Transfer favoured if the energy of the
states of the two ions are similar, when
the two S=3/2 spins (t2g)are parallel. 
By Hund’s rule, the transfered electron
has also its spin parallel (eg).

Strong correlation between the
magnetic and the electric transport
properties: 

•a large change of electrical
resistivity with magnetization

•Nearly 100% polarized current

The interaction also depends on the angle of the bond Mn-O-Mn:

Role of lattice deformations (static and dynamic)
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magnetic interactions and electron transport: double-exchange

Colossal magnetoresistance
(Nd-Sm)0.5Sr0.5 MnO3

0 2 4 6 8

-20

-10

0
T<TC

La2/3Ca1/3MnO3

14K

101K
79K

120K
149K

59K

189K

39K

249K

 

Δρ
/ρ

 (%
)

H(kOe)

Change of resistivity with
magnetic field at several
temperatures

Resistivity change with magnetic field
and temperature :

Metallic vs insulator behaviour



46

Plan
•The news from Stockholm
•Giant magnetoresistance and magnetism
•Spin transport phenomena: tunnel, filter and torque
•Colossal magnetoresistance
•Hyperfine studies in magnetoresistive materials
•Conclusions and perspectives



47

Why hyperfine studies in
magnetoresistive materials

•To obtain a local and element selective
probing

•Bulk and surface probes can be used (γ)

•Sensitivity (1: 10000 in one layer or ppb
concentration)

Hyperfine studies using radioactive isotopes
provide information on the electric field gradient and
magnetic hyperfine field on the probe nucleus
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Nuclear techniques …PAC , NMR, NQR, Mössbauer…
Hyperfine interactions: PACSource of information 

Hyperfine splitting

Probe
nucleus momentsLattice

electric/magnetic fields

.Bhf
μ ∇E    Q⊗

ΔEQ

ΔΕΜ +/-3/2

+/-1/2-5/2

+/-5/2
I=5/2

-3/2
-1/2
+1/2
+3/2
+5/2

different probe elements

different nuclear parameters

different sensitivities
ΔE = μ Bhf
=h wL(m-m`)

ΔE = e Q Vzz (m2-m`2)/4I(2I-1)
=3h ωQ (m2-m`2)

Sample
nanoscopic regions 

different local 
environments

PAC efficiency is temperature independent

η=(Vxx-Vyy)/Vzz
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Perturbed Angular Correlation:Experimental

Vzz – EFG principal component

η=(Vxx-Vyy)/Vzz – Asymmetry  parameter

Bhf – Magnetic Hyperfine Field

δ– Relative width of Vzz distribution

λ– Dynamic attenuation (time dependent 
interactions)

Characteristic Parameters
111mCd 111Cd 

t1/2=48 min

Samples:  powders implanted with 111mCd 
Energy=60 keV Dose < 1012at/cm2

Samples annealed in a controlled atmosphere

Intermediate
state
t= 85ns
Q= 0.83b
μ=-0.7656 μN
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Pr-CaMnO3 :Ferromagnetic vs Antiferromagnetic 
& Ferroelectric

Ca: 25%
Ferromagnetic

Ca: 85%
Antiferromagnetic + Ferroelectric

(charge+ orbital order)

A. Lopes et al, submitted PRL
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eg and t2g 
Mn d 

orbitals

Mn3+

Grenier et al, 
Phys Rev. B 69, 
134419 (2004)

Daoud-Aladine et al, 
Phys Rev. Lett 89, 

97205 (2002)

J. Coey
Nature 430,
155 (2004)

CE (1/2Mn3+)

Coupling of magnetic, 
orbital and electrical order
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soft-landing experiments in the chamber ASPIC
(Apparatus for Surface Physics and Interfaces at CERN)

Surface and Interface Magnetism on the Atomic Scale, H.H. Bertschat
in A. V. Narlikar (ed.) Frontiers in Magnetic Materials, Springer 2005

Behaviour of single atoms in surfaces
and interfaces:
Main role of coordination number
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low temperature nuclear orientation technique.

magnetic properties of Fe/Ag interfaces
Phalet et al, PRL 86 902 (2001); PRB 71 144431 (2005)

only the Ag nuclei at the interface experience a significant hyperfine field, 
while Ag nuclei in the second layer from the interface experience only a 
very small field
Roughness of Fe/Ag interface decreases strongly the MHF

Exchange bias effects in Co (FM) /Au/CoO (AFM) layers
Gierlings et al, Eur. Phys. J. B, 45 137 (2005)

sensitive only to the Au atoms in direct contact with
magnetic surface atoms

For a review: M. J. Prandolini, Rep.Prog.Phys.(2006)
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•Modern technology requires materials that rely on
microscopic manifestations of deep quantum
nature: a playground for physicists

•Nanotechnologies required for the fabrication of the
materials and devices are also challenges to 
materials engineers

•Local probing is a key tool to a deep understanding
of magnetic and electric phenomena in materials, 
with complex interaction of several degrees of
freedom at the nanoscale

•Other issues: 
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Multiferroic materials

Gajek et al, Nat Mat (2007)

Multiferroics are singular materials 
that can exhibit simultaneously 
electric and magnetic orders. 
Some are ferroelectric and 
ferromagnetic and provide the 
opportunity to encode information in 
electric polarization and 
magnetization to obtain four logic 
states.

•Tunnel junctions with multiferroic barriers
•Tuning of exchange with electric field
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Multiferroic materials
Hyperfine studies have been initiated in multiferroic manganites.
See Tânia Mendonça (Wednesday)

Van Aken , thesis
univ. Groningen

Perovskite phases
octahedra

Hexagonal phase
Trigonal bipyramid

AMnO3
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Magnetic semiconductors
Magnetic semiconductors are attracting particular 
attention from the point of view of spintronics

Semiconductor materials have always been subject of many 
studies using the solid-state radioactive ions techniques 
(hyperfine and dopants location by channeling).

Of particular interest is the study of the role of magnetic dopants
and local magnetic fields

•are magnetic impurities segregated 

•do they promote an intrinsic band polarisation?



62

The end
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